

ARITMETICA

PARA LA INSTRUCCION PRIMARIA

ELEMENTAL I SUPERIOR.
Adoptada por el Supremo Gobierno para texto de enseñaнza en las Escuelas de este Listrito Universitario.

OBRN ORDE

para toda clase de personas.

REDACTADA

—.fantiago 00aca.@uzman-on,

DIRECTOR JENERAL DE LA INSTRUCCION PRIMABIA.

BCCBE-1861.

lmprenta Boliviaua.

Este Opúsculo es propiedad de su Autor, quien perseguira ante la lei al que lo reimprima \sin su permiso.

OEOLOLDOBCA

a la juventud cruceña.

Alejado en la primavera de mi vida de ese bello eden de mi nacimiento, donde me iniciara en el arte difícil de instruir i educar á la amable infancia, con el objeto de adelantar mis pequenos conocimientos en esta ilastrada $\mathrm{Ca}-$ pital î de ser útil á la Patria, í mui especialmeate á vos, puearda urvented; no pudiendo volver ya á daros personalmente mis lecciones, recibil al menos esta obrilla, qque, no sin eucojimiento os dedico, para facilitaros el progreso en la industria i en las artes a que os convida la riqueza de ese privilejiado suelo, al que, con la mayor efusion, rindo el mas profundo homenaje de mi amor í ternura filial. Dignaos, pues, aceptar este dehil ensayo, frato de mis constantes desvelos, í conservad por única recompensa, en vuestra memoria, un grato recuerdo de vuestro paisano í amigo.-

- V -

FOMENTO

a las escuelas primarias DE SANTA-CRUZ.

Sucre, á 28 de Diciembre de 1861.

Al Señor Presidente de la Municipalidad de la Ciudad de Santa-Cruz.

SEÑOR.-Largo tiempo ausente de ese hermoso Pais, de grandioso porvenir, donde se animara mi existencia í feliz pasara mi juventud; sin olvidarlo un solo momento, recordandolo siempre con la ternura con que lo aman todos sus hijos, í arihelando por su progreso, quiero en alguna manera contribuir á él, facilitando á su tierna juventud los medios rudimentales de cultivar su intetijencia, en justo homenaje de mi reconocimiento. A este fin, tengo la satisfaccion de remitiros algunos ejemplares de los diferentes ensayos literarios que en favor del ramo vital de la Instruccion Primaria the publicado en esta Capital, f que constan de la razon adjunta, para que os sirvais fomentar las escuelas públicas de ambos sexus de la Capital í Cantores, ell la forma que se indica en las instrucciones.

Aceptad, noble reprisentante del pueblo, esa pequeña ofrenda de mi patriotismo, I trasmitidle estos mis sentimientos, igualmente que, á los ilustres miembros del Cuerpo que dignamente presidis, rogandoles me cuenten siempre, á mí íá mis tiernos hijoss, en el número de los leales cruceños.

Con tal motivo tengo la honra de ofreceros las consideraciones de mi mas profundo respeto í aprecio, i de suscribirme vuestro atento servidor.

Santiago Vaca-Guzman.

RdZ0N

de los opúsculos que remite el que suscribe al Señor Presidente de la Municipalidad de Santa-Cruz, para fomento de las Escuelas.

TRATADO:.

EJEMPLARES.

$1 .{ }^{\circ}$ - Aritmética Mercantil. 130
20° - Compendio de Ortografia de la Lengua Castellana. 130
$3 .{ }^{\circ}$ - Catecesmo de la Doetrina Cristiana. 150
4. ${ }^{\circ}$ - Exposicioa de la Doctrina cristiana. 1.50
5. ${ }^{\circ}$-Reglas de Urbanidad. 173
6. ${ }^{\circ}$ - Colecciones de muestras de escritura ingless. 180
7.0-Nueva Cortilla 6 silabario completo. para las Escuelas Catotonales. 500
8. ${ }^{\circ}$ - Método de lectura gradual, en 10 cuadros, pa- ra las Esmuelas de I/ Capital. 50
9.0-La Exposicion de dicho hátodo, que contiene ademas las reglas para easeñar á leer.
12
12
10°-sistema de eiscinaza untua simaltanea. 13
Sama.

- 1,000

IMSTRLECIONES.

1. ${ }^{3}$-Diehos ejemplares se deju sitarín en el Tesoro d^{6} Instruccoun Pábica departamental, donde se thevará cuenta de su inversion.
2. *-Al principio de cada año escolar pasará cada Rejente una razoa nominal de los alumnos que concurran á su escuela, visuda por la autoridad local, al Señor Peesidente de la Municipaltdad de la Capith, quien ordenará al Tesocero del ramo les remita cierto número de ejemplares de cada tratado, eh proporcion al de los alumios expresados, en esta forma: de los tratados Ns. 1. 2 al $6 .^{\circ}$, á razon del 5 por eiento; f del $\mathrm{N}^{\circ} .7 . \%$ el 10 .
3. \#-Estos ejemplares se distribuiran por el Rejente entre los alumnos mas pobres i aplicados, de á un ejemplar á cada uno seyun su necesidad.
4. \#- Para el uso de cada Escuela se remitiran tambien los tratados siquientes: del N. ${ }^{\circ} 8.0^{\circ}$, á razon del 2 por ciento; i de los 90° í10 ${ }^{\circ}$, un ejemplar por una sola vez.
5. *-EI Rejente acusará recibo acompañando una lisIa de los atumnos que hayan sido agraciados, cuyos documentos se deposilarán en el expresado Tesoro.

> Santiago Vaca-Guzman.

DOCUMENTOS OFICIALES

sobre la redaccion íadopcion de este חpúsculo para texto de enseñanza en las Escuelas de instruccion primaria elemental í superior.

> Direccion jeneral déla \Sucre, á 4 de Marzo Instruccion Primaria. \int de 1861.

A S. S. el Cancelario de esta Universidad.

SEÑOR.

En su respetable nota de 19 de Abril del año pasado se sirvió U. S. comunicarme que el Supremo Gobierno, en sa circular de 20 de Marzo del mismo año, habia encargado al Consejo Universitario que dignamente preside, la redaccion de algunos opúsculos destinados á la Instruccion primaria, I que dicho Consejo se habia dignado favorecerme con la hanrosa confianza de encargarme la redaccion de un opásculo de Aritmética mercantil. Bien penetrado de lo arduo que seria para mí llenar debidamente una comision tan delicada, me habria arredrado en aceptarla, si como patriota í amante del progreso de la javentud no me considerase obligado á hacer de mi parte cuantos esfuerzos quiera demandar de mi pequeñez el Ilustre Consejo, que tanto anhela por segundar las benéficas miras de nuestro filantropico Gobierno; I, sin embargo de hallarse desde entonces bastante quebrantada mi salud, he hectio lo posible por corresponder cuanto anles á la confianza que se mę hizo, sin omitir
sacrificio alguno: como que, concluida la obra, he tenido á bien hacerla imprimir, á fin de que pueda servir de texto á la ensenanza desde el presente año escolar, en cayo estado tengo la honra de pasarla á sus manos.

Ent ella, como se informará U. S., se han consultado las condiciones necesarias para que corresponda á su objeto í al título que lleva; pues en una pequena extension se han comprendido los contocimientos necesarios al comercio í las principales reglas que hacen parte de la Aritáética jeneral, limitandolas á la parte práctica que son de inmediata aplicacion á las transacciones mercantiles í otros usos de la vida; las cuales se han expuesto con el órdea, claridad, precision í método convenientos, para facilitar su estudio á la juventad de uno í otro sexo, í hacerlas igualmente útiles á toda clase de personas. En efecto, en das Nociones preliminares, se trata del sistema legal de medidas, pesas ámonedas nacionales, f dem is conecimientos ya indicados: ell la Primera purte, de las operaciones de composicion i descomposicion de los números enteros, quebrados, denominedos i decimates: i ell la Seganda, do la teoria de las razones i proporciones, $\{$ de todas las combinaciones de aqueJlas operaciones, aplicadas á los usos nas frecuentes de la sociedad, Henando en ambas partes los vacios que se notan casi en todos los opúsculos elementales que sirven de texto; ítermina con un Apéadice, sobre el sistema métrico decimal isu correspondeacia con las principates medidas espanolas, coyo conocimiento se hace indispensable en el dia, en que tas ideas de progreso tienden á que se adopte en Bolivia este sencillo i ventaloso sistema.

Dichas materias se han tratado de una manera sólida í apoyada en- los verdaderos prin-
cipios de la ciencia, en vista de los mejores sutores, como som: Lacroix, Vallejo, Bermudez de Castro, Mujia, Lavalle, Urcullu í otros, evitando teorias inutiles que solo sirven para confundir á los alumos; i, por to que respecta al córden, se ha seguido el mas matural, procediendo de to simple á lo compuesto, i enlazando las ideas de tal modo que las unas se deducen lójicamente de las otras, separandome en algunos casos de la rutina establecida. Tambien se ha cuidado de manifestar la aplicacion de las teorias que abraza, 角 de comprobar cada operacion con ejemplos 0 cálcalos industriales, á fin de poner al alcance de los principiantes la utilidad de esta importante ciencia; pues el plan rigurosamente filosófico í abstracto seguido en los expresados textos í en sn enseñanza, no ha producido los mejeres resultados, sino mas hien dificultades, atribayendose á esto da indiferencia con que emprenden sn estudio 1 el niagan frato que sacan at conctuirlo, en términos de que no pueden farmar la cuenta mas sencilla, sieudo patrimonio esclusive de mui pros el entender de costabilidad; í por último, se ham simplificado eu To posible las operaciones, porque todo calculador debe proponerse por fin principal la bre. vedad en ellas.

En órden al método, se ha empleado el que la experiencia tiene acreditado como el mejor para facilitar el aprendizaje: tal es, en primer Jugar, el interrogativo, que precisa las ideas, cautiva la atencion del niño en su tierna edad por la variedad de las preguntas, I ejercita su debil memoria poco á poco: en segnndo lugar, como los principios í reglas de la Aritmética estan enlazados entre sí í á menudo hai necesidad de reproducir las mismas ideas, porgue la werdad que se expresa depende de las que le

- X

han precedido, para facilitar la referencia, se han numerado por su órden todas las preguntas: í en tercer lugar, los ejemplos de las reglas jenerales se han puesto al fin del Apéndice, para que pueda el niño estudiarlas sin interrupcion ni distraccion, siendo de cargo del preceptor el presentarselos prac-ticamente, lo mismo que ampliar í aclarar con otros ejemplos que sean precisos todas las reglas í casos particulares; í como en cada regla se halla una cita á dichos ejemplos, tiene el alumno la posibilidad de consultarlos.

Tales son las ventajas que presenta el plan que en la redaccion de esta obrita se ha seguido, como el mas propio para allanar las dificultades que á los principiantes ofrece el estudio de los primeros elementos de las ciencias exactas, í que ha de disponerlos para estudiar con fruto las Matemáticas en jeneral, ó para desempeùarse en los diferentes negocios de la vida, en la contabilidad de cualquier establecimiento mercantil, industrial ó rural, en las administraciones públicas i en las transacciones del comercio; sirviendo ademas, para que los preceptores í maestras (particularmente de provincia), í aun las persunas que no hayan heclio estudio de esta ciencia, puedan por sí itistruirse fácilmente, para su mejor desempeño; í de un breve repertorio, á las que se ballen ya iniciadas en esta ingrata materia: ventajas que eran de desearse f que no reune ninguno de tos opúscalos nacionales 6 estranjeros que conocemos, lo que ha dado lagar á que nuestro ilustrado Gobierno hubiese encargado la redaccion de un manual á propósito. Si el que tengo el honor de ofrecer á su consideracion llegase á corresponder á sus deseos, i contribuyese eficazmente al progreso de la instruccion popular, ohjete de sus constantes

- XI -

desvelos, me consideraré bien recompensado del pequeño trabajo que he tenido en formarlo.

Dignese, Señor Cancelario, someter dicho opásculo á la aprobacion del Ilustre Cousejo, í con su informe elevarlo al conocimiento del Supremo Gobierno=Dios guarde á U. S. $=\mathrm{S}$. $\mathrm{C} .=$ Santiago Vaca-Guzman.

Sala del Consejo Universitario.-Sucre, Marzo 4 de $1 \mathrm{S6L}$.

A la Seccion 1.a para que, asociada de los profesores de Matemáticas Doctores Felipe Lira - Julian Eladio Justiniano, emita su opinion, despues del exámen comparativo entre el Opúsculo adjunto i el presentado anteriormente por el Cindadano Benjamin Matienzo, sobre cuár de estos puede ser adoptado con mas ventaja para la instruccion primaria. $=$ Rábrica del Senor Cancelario $=$ Bartolomé Aillon, Secretario Jeneral.

> Sula del Consejo Universitario.-Sucre, Agəsto 4 de 1861.

EI Consejo Universitario, de acuerdo con el dictamen de su Seecion 1. a í de la apreciacion cientifica de los Señores Profesores de Matemáticas, Felipe Líra \{ Julian Eladio Justiniano, a priceba el Opúsculo de Aritmétíca mercantil, redactado por el Director Jeneral, Don Santiago VacaGuaman, dandole la preferencia sobre el presentado por el Ciudadano Benjamin Matienzo. Elére\$e á la resolucion del Señor Superintendente de

Instruccion Pública. $=$ Delgadillo. $=$ Bartolomé AiIlon, Secretario jeneral.

> Miristerio de Instrvccion Pública i Culto.Sucre, Noviembre 7 de 1861.-N. ${ }^{\circ} 482$.

Vistos los informes prestados por los Consejos Universitarios de esta Capital í del distrito de $\mathrm{La}-\mathrm{Paz}$, respecto al mérito de los opúsculos de Aritmética redactados para la instruecion primaria elemental í superior por los Sénores Santiago Vaca-Guzman $\{$ Benjamin Matienzo, 1 considerando: $1 .^{\circ}$ que comparativamente es superior el del primero: 2. ${ }^{\circ}$ que juzgado intrinsecamente el texto de Aritmética mercantil de Santiago Vaca-Guzman, posee las condiciones que le hacen propio para la enseñanza primaria; se le aprueba para el uso del distrito de la Eniversidad de Sucre. El Gobierno acuerda las gracias en nombre de la Nacion al Ciudadano Santiago VacaGuzman, que ha obtenido la preferencia en esta redaccion, recomendándole á la considerucion pública, por los muchos servicios que tiene prestades á la instruccion primaria.-Rúbrica de S. E.= P. O. de S. E. $=$ Salinas.

FE DE ERRATAS.

Pájina 10 línea 19 dice: 18 al 15; léase 18 al 22. " 79 " 7 dice: la cual se obtendra en la misma cantidad que la primera; suprímase.
« 92 « 23 dice: 1000:100; léase 10000:100.

INDICE.

-

Dedicatoria á la Juventud Cruceña. . . . III. Fomentóá las Escuelas primarias de Santa-Cruz. V. Documentos oficiales sobre la redaccion í adopcion de este Opúsculo para texto de enseñanza en las Escuelas de instruccion primaria elemental i superior. VII. Fe de erratas. XII.
Explicacion de los signos í abreviaturas que se emplean en los cálculos aritméticos.

NOCIONES PRELIMINARES.

§. I.-Explicase lo que es Aritmética, cantidad, número 1 unidad.
§. II.-De las diferentes especies de números. 4.
§. III.-Del sistema legal de medidas, pesas i monedas bolivianas.
§. IV.-Del modo de valuar la fuerza del aguardiente.-De la pureza ó lei del oro í de la plata.-Del peso í lei de nuestras monedas í de su valor en el extranjero.
§. V.-De algunas medidas de lonjitud que traen las mercaderias extranjeras al comercio de Bolivia i de su correspondencia con la vara castellana.
§. VI.-Division de la Aritmética.-De las operaciones que pueden ejecutarse con los números. 11.

PARTE PRIMERA.

De la expresion, composicion í descomposicion de los números en jeneral.

SECCION 1 .a a

De la expresion, composicion í descomposicion de los números enteros.
LECCION 1. ${ }^{\text {a }}$ - De la expresion de los núme-
ros enteros. - De la numeracion hablada. 12.
LECCION 2.a - De la numeracion escrita.Propiedades de los números enteros. . 14.
LECCION $3 .{ }^{\circ}-$ De la operacion de sumar números enteros, 6 de la adicion $\{s$ us usos. 19.
LECCION 4. ${ }^{\text {a }}$ - De la operacion de restar, ó de la sustraccion de los númemos enteros í sus usos.
LECCION $3 .{ }^{2}-$ De las pruebas de la adicion
i sustraccion.
23.
LECCICN $6.0^{3}-$ De la operacion de multiplicar números enteros; su abreviacion í usos. 24.

LECCLON 7. De $^{\text {- De la operacion de dividir ó }}$ partir númeres enteros, su abreviacion í usos 29.
LECCION $8 .^{\circ}$ - De las pruebas de la multiplicacion I division.

SECCION 2.a

De la expresion, composicion í descomposicion de los números quebrados í mixtos.
LECCION 1.0-De la expresion í escritura de los númeras quebrados ó fracciones comunes, ísu clasilicacion.-Números mixtos.
LECCION $2 .^{\text {a }}-$ De las propiedades de los quebrados comunes.-Su reduccion á uit comun denominador í simplificacion.- Mo do de extraer los enteros de un quebrado impropio, $\{$ de reducir los números enteros ímistos á quebrados impropios.
brados en especie conocida.

LECCION 4.․-De la adicion de los números.

- XV -
quebrados 1 mixtos. 42.
LECCION 5. ${ }^{\text {a }}$-De la sustraccion de los nú- meros quebrados í mixtos. 43.
LECCION 6. ${ }^{\text {a }}$-De la multiplicacion de los números quebrados í mixtos. 44.
LECCION 7.a-De la division de los núme- res quebrados í mixtos. 43.
LECCION 8.a ${ }^{\text {- De }}$ los quebrados de quebrados. 46.
SECCION 3.a
De la expresion, composicion 1 descomposicion de los números complejos ó denominados é incomplejos.
LECCION 1. ${ }^{\circ}$-De la expresion í escritura de los números complejos ó denominados é incomplejos; su reduccion de especie superior á inferior, í de esta en aquella; su trasformacion en quebrados comunes, íla de estos en números denominados.
LECCION 2^{a}.-De la adiccion de los núme-
ros denominados.
LECCION $3 . \mathrm{a}^{a}$ - De la sustraccion de los nú-
meros denominados.
LECCION 4.a-De la multiplicacion de los números denominados.
LECCION 5. ${ }^{\text {a }}$-De la division de los núme- ros denominados. 51.

SECCION 4. ${ }^{\text {a }}$

De la expresion, composicion í descomposicion de las fracciones decimales.
LECCION 1.a-De la expresion 1 í escritura de las fracciones decimales
31.
LECCION 2. ${ }^{\circ}$-De las propiedades de las fracciones decimales í su reduccion á una misma denominacion.
54.
LECCION 3.a-De la trasformacion de loṣ quebrados comunes í de los números denominados en decimales.
LeCCION 4. ${ }^{\text {a }}$-De la valuacion de las fracciones decimales en especie conocida. 5%
LECEION $5 .^{a}-$ De la adicion de las fracciones decimales.

LECCION 6.a-De la sustraccion de las frac
ciones decimales.
LECCION 7.a-De la multiplicacion de las fracciones decimales. 60.
LECCION 8. ${ }^{3}$-De da division de las frac- ciones decimales. 61.

PARTE SEGUNDA.

De las diferentes combinaciones de las operaciones: de composicion í descomposicion, 6 sea, de las aplicaciones de la Aritmética á los usos. mas frecuentes de la sociedad.
LECGION 1.a-Teoria de las razones í proporciones. 63.
LECGION 2.a-De la regla de tres. . . 69.
LECCION 3.a-De la regla de interes. . 70.
LECCION $4 .^{a}-\mathrm{De}$ Ia regla de descuento. 72.
LECCION $5 .^{a}-$ De la regla de aneaje 6 re-
duccion de medidas.

LECGION 6. ${ }^{\text {- }}$-De la regla de cambio exterior 74.
LECCION 7.a-De la regla conjunta. . 75.
LECCION 8.a-De la regla de compañia. . 76.
LECCION $9.0-$ De la regla de aligacion il 76.
LECCIUN 10.a-De la regla de reduccion 79 .
LECGION 11. - -De la regla de falsa posicion. 79.
A PÉNDICE.-Sistema métrico decimal frances. 81.
EJEMPLOS á que se refieren las citas. . 83,

EXPLICACON

de los signos $\{$ abreviaturas que se emplean en los cálculos aritméticos.

SIGNOS.

4 Este signo es el de la adicion, I se pronuncia mas. Asi la expresion $4+3$, se enuncia cuatro mas cinco, é iudica que es necesario ainadir 5 á las 4 uridades.

- Esle signo, que es el de la sustraccion, se enuncia ménos. Asi la expresion 7-4, se traducirá siete ménos cuatro, é indica que se deben disminatir 4 de 7 unidades.
$=$ Este signo se emplea para expresar la iguaddad entre dos cantidades, i se pronuncia igual d. La expresion $4+3=7$, deberá enunciarse cuatro mas tres igual á siete; la expresion $7-4=3$, se enuucia siete mémos cuatro igual á tres.
\times Este signo es el de la multiplicacion, ise enumcia multiplicado por; de modo que esta expresion 4×3, deberá enuuciarse cuatro multiplicado por tres.
: Dos puntos asi dispuestos constituyen el signo de la division, i se enuncia dividido por; asi 12:4, se pronuncia doce dividido por cuatro.

De los signos que se emplean en las razones i proporciones, se tratará en su lugar.

BREVIATURAS.

Cuando estos abreviaturas se usan en plural, Se les agrega una s; ménos á las cinco primeras. Los números ordinales se expresan con las cifras arábigas í una a, ó una o arriba, segun sea la terminacion que haya de usarse. Asi, por cjemplo, para expresar: primero, primera; se escribe: $1 .{ }^{\circ}, 1^{\text {a }}$

Advertencia. El número que se halle entre paréntesis, indica una referencia á la regla explicada en la preganta que lleva el mismo número; bien para que se tenga presente, ó bien para que se practique la operacion contenida en ella.

\&内JTMETMCA omer cinval

NOCIONES PRELTMINARES.

$$
\mathbb{S} I .
$$

Explícase, lo que es Aritmética, cantidad, número. i unidad.

1. Pregunta. Qué es Aritmética. Respuesta. Es la ciencia que trata de averiguagr las relaciones 1 propiedades de la cantidad expresada por números, i de enseñar las diversas combinaciones \& operáciones de que son suceptibles. Cuando sé aplica á las usos prácticos del comercio, se llama mercantil.
2. P. Qué es cantidad? R. Todo lo que es suceptible de aumento ó de diminucion que se prede medir, valuar, contar i expresar con números; como lineas, superficies, ó un conjunto de varias cosas ó unidades semejantes.
3. P. Qué es número? R. E§ el conjunto de las unidades con que expresamios el valor de la cantidad; como ocho caras dies libros, etc.
4. P. Qué es unidad? R. Es una de las cosas 6o partes que se ha elejido para que sirva de medida 6 de término de comparacion en el número; como una vara, un libro, etc.

$-4-$

§ II.

De las diferentes especies de números.

5. P. En qué clases se dividen los números? R. En abstractos, concretos, homojéneos, heterojéneos, simples ó dijitos 6 compuestos; de cuyo conocimiento vamos á ocuparnos. Tambien se dividen en enteros, quebrados, mixtos, quebrados de quebrados, decimales, complejos ó denominados é incomplejos; de los que se tratará en sus respectivos lugares.
6. P. Cuáles son números abstractos? R. Los que se enuncian sin determinar la especie de unidades á que se refieren; como ocho, diez, etc.
7. P. Cuáles son múmeros concretos? R. Los que se enuncian determinando la especie á que se refieren; como seis hombres, cuatro libros, etc.
8. P. Cuáles son números homojéneos? R. Los que expresan unidades de una misma especie; como doce arrobas, veinte arrobas, etc.
9. P. Cuáles son *úmeros heterojéneos? R. Los que se refieren á unidades de diferentes especies; como quince libras, siete hombres, etc.
10. P. Cuáles son números simples 6 díjitos? R. Los que constan de ana sola cifra; como el 1. el 2, el 3, hasta el 9 .
11. P. Cuáles son números compuestos? R. Los que constan de dos ú mas cifras; como 12; 325; etc.

§ HI.

Del sistema legal de medidas, pesas i monedas bolivianas.

12. P. Cuáles son las medidas que se asan mas comunmente? R. Las que sirven para mudir las monedas, el tiempo, el peso de los cuerpos,
las distancias, las superficies de los campos, las capacidades para los granos 1 los líquidos, 1 para las cosas que se miden por colecciones de unidades. 13. P. En las medidas expresadas ise observa el mismo sistema decimal de la numeracion? R. No, Senor: encada clase se observa una lei particular, 1 de esto resulta grande complicacion en los cálculos. embarazos en las operaciones comerciales 1 sérios obstáculos á la enseñanza de la Aritmética; cuya rutina debiera ya abandonarse adoptando un nuevo sistema de medidas uniforme I sencillo que remedie los inconvenientes expresados (A).
13. P. Qué clases de monedas se usan en Bolivia? R. Dos, á saber; de oról de plata.
14. P. Cuál es la principal moneda de oro, I cómo se divide f subdivide? R. La onza de oro fuerte, que se divide en 2 medias onzas, en 4 cuartos ó doblones, en 8 octávos 6 escudos í en 16 avos 6 medios escudos.
15. P. Qué valor representa 'a onza de oro fuerte $\{$ las partes en que se divide? La onza de oro fuerte vale 17 pesos; la media onza, 8 pesos 4 reales; el doblon, 4 pesos 2 reales; el eseudi, 2 pesos 1 real; i el medio escudo, 1 peso medio real.
16. P. Cuál es la principal moneda de plata, I cómo se divide 1 subdivide? R. El peso fuerte
(A) El nuevo sistema METRICO DECIMAL adoptado en Fran ia í en otros naviones cultas es el que ha llegado á la perfeccion posible i ofrece las ventajas apetecibles; porque sus unidades principales i las subdivisiones de estas unidades siguen entre sí la lei del sistema decimal de la sumeracion, i sabido es lo fácil que es el cálculo De las fyacciones decimales. Es fijo i suceptible de ser adoptado en todos les paises íseria de desear que nuestro ilustrado Cobierno introdujese cu la República una innovacion tan racional i de inmensos resultudos para la civilizacion í progreso del pais.
que se divide en las mismas partes que la onza de oro.
17. P. Quié valor representa el peso fuerte 1 las partes en que se divide? R. El peso fuerte vale 8 reales; el medio peso, 1 reales; el cuarto, 2 reales; el oetávo, 1 real; el dieziseis avo, medio real; el medio real, 2 cuartillos de real; el cuartillo, 2 octávos de real. El cuartillo í el octáyo de real no estan representados en moneda corriente, I son fracciones imajinarias de que se usa en el comercio para facilitar las transaciones mercantiles.
18. Para el mismo fin tambien se acostumbra jeneralmente en el comercio cousiderar dividido el valor del peso fuerte en cien partes iguales, que se llaman centócos ó céntimos; los 7 reales, en 87 i medio centávos; los 6 reales, en 75 ; los ä reales, en 62 i medio; los 4 reales, en 50 ; los 3 reales, en 371 medio; los 2 reales, en 25 ; el real, en 12 í medio; el medio real, en 6 í un cuarto; el cuartillo, en 3 í un oetávo; í el octávo, eu 1 I nueve diezíseis avos centávos.
19. P. Cuál es la principal medida para el tiempo, í cómo se divide í subdivide? R. Et siglo, que se divide en cien años; el año en 12 meses 0 en 363 dias, 1 si es bisiesto, en 366, que esto sucede de 4 en 4 años; el mes se divide en 28,306031 dias segun los meses, á saber: Febrero en 28, i si es bisiesto, en 29; Abril, Junio, Setiembre 1 Noviembre en 30,1 los restantes en 31 ; el dia se divide en 24 horas; la hora, en 2 medias horas, en 4 cuartos 1 en 60 minutos; la media hora, en 30 minutos; el cuarto, en 15; í el minuto, se divide en 60 seguidos.
20. Para los cálculos comerciales se,considea ra dividido el aǹo solamente en 360 dias; ílos meses, en 30.
21. P. Cuál es la principal medida para el

- 7 -

peso de los cuerpos, i cómo se divide í subdivide? R. El quintal, que se divide en 4 arrobas; la arroba, ell 23 libras; la libra, en 16 onzas; la onaa, en 16 adarmes; 1 el adarme, en 36 granes.
23. Para el peso de los metales preciosos tambien se divide la libra en 2 marcos; el marco, en 8 onzas; la onza, en 4 cuartas; la cuarta, en 2 ochavas 6 dracmas; la ochava, en 2 adarmes; i el adarme, en 36 granos.
24. P. Cuál es la priucipal medida para las distancias, í como se divide í subdivide? R. La legua, que se divide en 40 cuadras, en 6,666 í 2 tercias varas, í ell 20,000 pies, que es el camino que se anda regularmente en una hora: fa cuadra se divide en 166 i 2 tercias varas; la vara, en 3 pies ó tercias, en 6 sexmas, en 12 medias sexmas í en 36 pulgadas; la tercia, en 12 puigadas; la pulgada, en 12 líneas; i la tínéa, en 12 puntos.
23. Tambien se divide la vara en 2 medias varas, en 4 palmos ó cuartas í en 8 octávas; la cuarta se divide en 9 pulgadas.
26. P. Cuál es la principal medida para las superficies de los campos, í cómo se divide í subdivide? R. El estadal cuadrado, que es un cuadro de 4 varas de largo is de ancho. Despues sigue la aranzada, que se compone de 20 estadales en cuadro, i luego la fanega de tierra, que se compone de 24 estadales en cuadro. La fanega de tierra se divide en 12 celemines 6 almudes; i el celemin, en 4 cuartillos.
27. P. Cuál es la principal medida de ca-i pacidad para los granos í demas cosas secas, í cóma se divide í subdivide? R. El cahiz, que se compot ne de 12 fanegas; íla fanega, de 12 celemines $千$ almudes.
28. P. Cuál es la principal medida de capacidad para los líquidos, í cómo se divide í sub-
divide? R. Para el vino, es la botiia, que contie né ว̊s libras 1 componen 36 botelias de las de Bordeaux; la botella contiene libra if media. El aceite, el aguardiente it miel, se miden al peso, por quintales, arrobas, ete.
29. P. Gual es la principal medida para las cosas que se miden por colecciones de unidades, f cómo se divide ísubdivide? R. La gretesa, gite se divide en 12 docenas if en 142 unidades; la docena se divide en 12 unidades (B).

δ IV.

Del modo de valuar la fierza del ayuardiente.-De la pareza ó lei Gel opo á de la plata. - Del puso t lei de nuostras monedas, ito su valor en el extraujera.
30. P. Cómo se aprecia la fuerza del agnardiente? R. Por gralos, que se miden con un inssfumento Hamado areómetio ó pesa-licor; mientrass mas fuerte es el aguardiente, senala mas grados í vale mas; el usual en el comercio es el de 18 grados.
31. P. Cómo se estima la purezá 6 lei de! oro i de la plata? R. Para esto se considera dividida imajimariamente una porcion cualquiera de oro
(B) Siendo de la mayor impertancia el conocimiento perfecto del sistema de medidas explicado, para el cálculu de los números denominados, para las transaciones del comercio, para las artes, las ciencias 1 otros ramos subalternos; debe el Maestro caidar de bacer conecer á sus Ialumnos, del modo posible, no solo los instrumintes mas -usnaies de aqueilas medidas jenerales, sino los que se iusen para las medidas especiales de su pravincia ó localidad. La viva voz det Maestra en presencia de tales objetos, producirá mejor efecto que cuanto squi se ha explicavo sobre esta interesante materia.
puro en 24 partes iguales llamadas quilates, suhdividiéndese cada quilate en 24 granos; que to tienen un peso determinado como los del marco. Del mismo modo una porcion cualquiefa de plata pura se considera ditidida en 12 partes iguales, que se liaman dineros, ícada dinero, en 21 paries Ilamadas gratoe, como los anteriores. Asi, por ejemplo, ina porcion de oro paro que pese 24 onzas 6 libras, seṕa de 24 quifates; pero, si en dichas 24 onzss ó libras, A fueren de ofro metal cualquiera, el oro de la mezcla será de 20 quilates, que son las partes de fine que hai en las 24 de la porcion. En cuanto á la plata sucede lo mismo; pres, si una porcion de este metal pesare 12 onzas $o ́$ libras, en caso de estar puro, será do lei de 12 dineros; pero si 5 de estas partes fueren de otro metal cualguiera, las 7 restantes que son de plata pura, expresarán los dineros, í se dirá que es plata de 7 diaeros.
32. B. Cuál es el peso fil lei de nuestras monedas de oro 1 plata? R. La onza de oro pesa $5 \$ 2$ 亿 1 décimo granos de marco í tiene de lei 21 quilates; es decir, que contiene 474 i. 3 décimos granos de oro fino 167 1 8 décimos de cobre. E1 peso fuerte de antigua emision tiene el mismo peso, i 10 dineros 20 granos de lei; es decir, que contiene 489 granos de fino, 153 1 1 décimo de cobre. Los ocho reales fehles acunados ea cuatros 6 en seacillo desde el año 30 al 59 , tienen 542 granos de peso í de lei 8 dineros, 6 sea 361 granos de fino i 181 i 1 décimo de cobre. El peso nuevo creado por decreto de 17 de 1 gosto de 1859, tiene 400 granos de peso 110 dineros 20 granos de lei, 6 sea 360 granos de fino í10 de cobre (C). 33. P. Cáá es el valor de nuestras mone-
(C) La lei de las monedas es jeneralmente de 9 décimos de plata ú oro 1 de 1 décimo de cobre.
das en el extranjero? R. El valor de la onza de oro varía de 16 á 17 pesos, 1 algunas veces sube segun las necesidades del comercio. Los pesos fuertes de antigua emision los reciben con un premio del 10 al 12 por ciento; advirtiéndose que las monedas expresadas no se admiteni si estan agojereadas aunque terigan el peso de lei. Nuestra moneda feble no se admite en el comercio de Chile; pero sí et las Repúblicas Arjentina í del Perú, por su valor nominal; mas no pueden Hevarla á Europa sin sufrir un descuento del 30 al 40 por ciento, por su mucha liga. Er peso de nueva emision se admite en el comercio de Chile por su valor intrínseco, á razon de 10 pesos cuatro reales el marco; i no teniendo aquel mas de 360 granos de fino, vale apróximadamente 82 centávos de la moneda chilena, cuyo precio sube hasta 85 segun las necesidades del comercio; es decir, que en el cambio sufrimos un descuento del 18 al 13 por ciento.

$$
\S V .
$$

De algunas medidas de lonjitud que traen las mercaderías extranjeras ál comercio de Bolivia, i de su correspondencia con la vara castellana.
34. P. Cuáles son las medidas que traen las mercaderías extranjeras? R. Las principales son las siguientes: el metro de Francia, que equivale apróximadamente á 1 vara 6 pulgadas í 6 líneas, es decir, que aumenta el 18 por ciento; la ana de Brabante, que equivale á 29 pulgadas 12 líneas, es decir, que disminuye el 19 por ciento; i la yarda de Inglaterra í de los Estados-Unidos, que equivale á 1 vara mas 2 pulgadas $i 11$ líneas, es decir, que aumenta el 8 por ciento.
35. Antes de ahora se usaban las anas de Francia, Béljica 1 Suiza, que en sedería í algodon

$-11-$

aumentaban el 36 por ciento; i en paños íjéneros de-lana, el 40 por ciento, las que se han reemplazado jeneralmente con el metro.
36. Tambien de algunos estados independientes I ciudades de Alemania se conoce la medida Hamada ellem, que disminuye mas ó ménos segun las localidades, á saber: la de Bremen, el 32 por ciento; la de Hamburgo 1 Leipsick, el 33; la de Viena, el 8 ; 1 la de Berlin, el 21 por ciento.
37. Para vender las mercaderías que vienen arregladas á las medidas expresadas, se reducen a varas; excepto las yardas, porque solo se pagan estas í no el aumento que dan.

§ VI.

Division de la Aritmética. - De las operaciones que
pueden ejecutarse con los numeros.
38. P. En cuántas partes se divide la Aritmética? R. En dos partes principales, á saber: la primera trata de la expresion, composicion 1 descomposicion de los números en jeneral; íla segunda, de las diferentes combinaciones de las operaciones de composicion 1 descomposicion, σ sea, de las aplicaciones de la Aritmética á los usos mas frecuentes de la sociedad. Cuando se ejecuta alguna de estas operaciones se dice que se calcula. 39. P. A qué se reducen las operaciones que pueden ejecutarse con los números? R. Como la cantidad es suceptible de aumento ó diminucion, í todo número es cantidad, resulta que con los números no se pueden ejecutar en realidad sino dos operaciones, á saber: operaciones de aumentar, í operaciones de disminuir; pero segun los diferentes modos que hai de aumentar ó disminuir, resultan cuatro operaciones elementales, que son: sumar, rest tar, mulliplicar, i dividir.

PARTE PRIMERA.

DE LA EXPRESION, COMPUSICION I DESCOMPOSICION DE LOS NúMEROS
 EN JENERAL.
 SECCION 1.

De la expresion, composicion 〔 descomposicion de los númercs enteros.

LECCION 1. ${ }^{\text {D }}$

De la expresion de los númerns enteros.-Dé la numeracion hablada.
40. P, Cuáles son números enteros? R. Los que expresan unidades enteras; como un peso, una cara, etc.
41. P. Cómo se expresan los números? R. Por medio de un sencillo sistema, el cuat consiste en expresar con cierto número de palabras i signos un número propuesto por grande que sea, cuYa operacion se llama rumeracion.
42. P. De cuántas maneras se puede considerar la numeracion? R. De dos, a saber: hablada 1 escrita.
43. P. Qué es numeracion hablada? R. La que enseǹa á formar 1 dar nombre á los numeros.
44. P. Qué es numeracion escrita? R. La que enseña á representar los números por medio de ciertos signos, que se Ilaman cifras δ guarismos. 45. P. Cómo se forman los números? R. Agregando sucesivamente á una unidad otra, i al conjunto de estas, otra,

-13 -

46. P. C6́mo se denominan las diferentes colecciones que se pueden formar? R. Observando el orden siguiente: Primero. Cualquier objeto que nos presenta la naturaleza solo i saparado de los demas de su especie, es en sí, lo que llamamos uno 6 unidad simple ó absoluta. Agregando á esta unidad otra, resulta la coleccion de unidades que se llama dos; i asi al conjunto de dos I uno se llama tres; al de tres I uno, cuatro; al de cuatro I uno, cinco; al de cinco 1 uno, seis; al de seis $\{$ uno, siete; al de siete f uno, ocho; al de ocho ituno, nueve; al de nueve 1 uno, diez. A esta coleccion se considera como una nueva unidad de segundo orden, que se llama decena.
47. Segundo. Agregando á esta decena las unidades anteriores, diciendo: diez ínno, once; diez I dos, doce, etc., se forman las demas; í asi á la coleccion de dos decenas se !lama veinte; á las tres decenas, treinla; á las cuatro decenas, cuarenta; á las cinco decenas, cincuenta; á las seis decenas, sesenta; á las siete decenas, setenta; á las ocho decenas; ochenta; á las nueve decenas, noventa; á las diez decenas, ciento. A esta coleccion se considera como otra nueva unidad de tercer órden, que se flama centena.
48. Tercero. Esta coleccion se compone de tantas decenas como unidades tiene una decena: if oomo hemos formado una centena, podemos format las siguientes: e asi, á la coleccion de dos centenas, se llama doscientos; á las tres centenas, trescientos; á las cuatro centenas, cuatrocientos; á las cinco centenas, quinientos; á las seis centenas seiscientos; á las siete centenas, setecientos; á las ocho centenas, ochocientos; á las nueve centenas, novecientos; á las diez centenas, mil ó millar. A esta coleccion se considera como otra nueva unidad de cuąrto orden, íasi las demas.
49. Cuarto. Siguiendo con esta nueva es-
pecie de unidades el mismo órden que con las unidades absolutas, tendremos que de diez millares se forma una nueva colececion Hamada decena de millar; de diez decenas de millar, una nueva coleccion llamada centena de millar; de diez centenas de millar, una nueva coleceion llamada mitlon. 50. Quinto. Siguiendo adelante, de diez. millones se forma una nueva coleccion llamada decena de milloa; de diez decenas de millon, una nueva coleccion llamada centera de millon; de diez centenas de millon, una nueva coleccion llamada millar de millon; de diez millares de millon, una nueva coleccion llamada decena de millar de millon; de diez decenas de millar de millon, una nmeva coleccion llamada centena de millar de millon; de diez centenas de millar de millon, una nueya coleccioń 土 2 Hamada billon.
50. Sexto. De esta manera í por los mismós grados que hemos suthide deste ta unidad absoluta al milton, desde este al hilton, se sube al trillon, al cuatrillon, al quintilfon, I asi en a felante; contando las unidades de cada orden desde una hasta nueve, comosi fuesen absolutas, í formando luego que se llega a diez, otra nueva unidad diez veces mayor; pudiéndose de este modo expresar cualquier cantidad por grande que sea. Tal es la teoria sobre que está basado el sistema de la numeracion verbal, Hlamado decimal ó décuplo, porque constituye una eseala 6 série ascendente de unidades de diez en dièz veces mayorés.

LEGCION 2.

De la numeracion escrita,-Propiedades de los números enteros.
52. P. Cuáles son las cifras 6 guarismos con que se representan los números? R. Son los

$-15-$

diez siguientes: 1 uno, 2 dos, 3 tres, 4 cuatro, 5 cinco, 6 seis, 7 siete, 8 ocho, 9 nueve, 0 cero. 53. P. Qué valor tiene el cero? R. El cero. por si solo es insignificante íno tiene valor alguno, pero sirve para oçupar en las combinaciones de cifras aquellos lugares que dejen vacios las unidades de cualesquiera órdenes que no se ènuncien en la expresion verbal del número propuesto.
51. P. Cómo se han de representar con tan pocas cifras todos los números pasibles? K . Por medio de un injenioso 1 sencillo sistema casi análogo al que ohservamos en la numeracion verbal, el cual consiste en representar los nueve primeros números con las cifras indicadas, 1 considerar cada una de ellas con dos yalores: uno absolir to, dependiente de su forma por consiguiente fijo, que es el que se les ha dado; 1 otro relatico. dependiente del lugar que ocupan, segun el cual pueden representar unidades de diferentes valores, de diez en diez veces mayores, ó continuamente décuplas, contando de derecha á izguierda; pues se ha establecido por principin 6 lei fundamental que cualquiera de las nueve cifras significativas represente, colocándola á la izquierda de otra, un número diez veces, 6 cien veces, 6 mil veces etc. mayor que el que representa por sí sola. Asi la cifra 1, por ejemplo, que representa una unidad estando sola 6 en el primer lugar de la derecha, la misma representará una decena colocándola en el segundo lugar hacia la izquierda, I una centena, colocandola en el tercero, i un millar, colocándola en el cuarto, í asi sucesivamente; Menando si con ceros los lugares que queden vacios á su derecha, á falta de cifras significativas, porque dicha cifra 6 cualquiera otra no representará los valores indicados. - no teniendo á su derecha otras cifras que ocupen los lagares inferiores de la que se quiere hacer tantas veces mayor.

- 16 -

55. P. Segun este principio ¿qué órden se ha de observar para escribir los números? R. El siguiente: en el primer lugar, contando de derecha izquierda, se colocan las unidades simples ó absos lutas; en el segundo, las decenas; en el tereero, las centenas; en el cuarto, los millares; en el quinto, las decenas de millar; en el sexto, las centenas de millar; en el sétimo, las unidades de millon; en el octávo, las decenas de millon; en el noveno, las centeras de millon; en el décimo, las unidades de millar de millon; en el undécimo, las decenas de millar de millon; en el duodécimo, las centenas de millar de millon; I asi sucesivamente las anidades, decenas ! contenas de billon, las de millar de billon; Ias de trillon; etc. En lo que se advertirá que los tres primeros órdenes de uuidades se repiten siempre, de derecha á izquierda, en ana escala ascendente Cormandu perfodos de á tres, á saber: los tres primeros órdenes forman el primer periodo, que es el de las unidades absolutas; los otros tres, el segundo, 6 el de los miles ó millares; los otros tres, el tercero, σ el de los millones; los otrus tres, el cuarto, 6 el de tos millares de millon; los otros tres, el quinto, 6 el de los billones; tic. 56. P. Qué otras reglas se han de observar para escribir los números? R. Las siguientes: Primera. Se empieza por la unidad de especie superior, teniendo presente la sacesion de los diferentes órdenes de unidades, yendo de izquierda á derecha, por ser este nuestro modo de escribir.
56. Segunda. Se examina qué érdenes de unidades estan exunciadas en la expresion verbal đel número propuesto, para no omitir ninguno í colocar en sus respectivos lugares las cifras siguificativas, fllenar con ceros los lügares de las unidades que no se enuncien.
57. Tercera. Es preciso tener presente, no solo la sucesion de los tres diferentes órdenes de
muidades de cada período, en que se va descomat poniendo el número al enunciarlo, sino tambien el órden con que, yendo de izquierda á derecha, se suceden unos á otras los diferentes periodos.
58. Cuarta íúltima. Sieel número propuesto fuese crecido, se escribe con facilidad, periodo por período, anotando las unidades de millar, de cualquier órden que sean, con una coma; las de millon, con un punto; las de billon, con dos; las de trillon, con tres puntos; etc. Véase el ejemplo n. ${ }^{\circ} 10^{\circ}$ que se halla al fin de estas lecciones. (D)
59. P, Cómo se leen los námeros cuando estan escritos? R. Se recorre primero el número propuesto, de derecha á izquierda, diciendo: ell el primer lugar, unidad; en el seguado, decena; en el tercero, centena; í asi sucesivamente siguiendo la escala ascendente de la numeracion (530), dividiendo al mismo tiempo el número, si fuese crecido,

[^0]en períodos de á tres cifras, anotando las unida* des de millar, de cualquier órden que sean, con una coma; las de millon, con un punto; las de billon, con dos; etc. De esta manera se vendrá en conocimiento, no solo del órden de unidades, I del valór que represente la primera cifra que esté á la izquierda, por donde se principiará á leer, sino de las demas; fíentonces lo ánico que se hace, es enunciar el valor de cada cifra significativa como si estubiese sola, designando al mismo tiempo el órden de unidades que corresponda al lugar en que esten colocadas; í luego al fin se pronuncia unidades. V. el ej. n. ${ }^{\circ} 2$.
61. P.' Qué otras propiedades tienen los ntmeros enteros? R. Ademas de las que se han notado ya (33 í 34), resulta; que colocando un cero á la derecha de un número cualquiera, se le hace diez veces mayor, porque la cifra que ántes reprem sentaba unidades, ahora representará decenas; la que decenas, centenas, etc., i de consiguiente resultará aumentado todo el número. Por la misma razon, si se le aumentan dos ceros, quedará hecho cien veces mayor; í en jeneral, tantas veces como exprese la unidad seguida de los ceros que se aumenten. Recíprocamente, si se suprime de la derecha de un número, uno, dos, tres, etc., ceros; se le hace diez, ciento, mil, ete. veces menor.

[^1]
- 19 -

LECCION $3 .{ }^{\infty}$

De la operacion de sumar números enteros, δ ' dद彑 la adicion, i sus usos. (E)

62. P. Cuál es la primera operacion de aumentar? R. Es la de sumar, que es reunir varios números homojéneos, 6 de una misma especie, en uno solo que expresa el valor de todos. La operacion por cuyo medio se ejecuta esto, se llama adicion; los números que se dan para sumar, se llaman sumandos ó partidas; í el resultado de la operacion suma ó total. Los sumandos deben ser homojéneos, porque un número de arrobas, por ejemplo, no puede aumentar otro de varas; etc.
63. P. Cuántos casos pueden ocurrir en la adicion? R. Tres, á saber: 1.0° Sumar entre sí números dijitos: 2. ${ }^{\circ}$ Sumar números compuestos í díjitos: 3. 1 sumar números compuestos. Para obtener la suma de los díjitos, se colocan unos debajo de otros, por comodidad, í se añade sucesivamente á uno de ellos todas las unidades contenidas en los otros.
64. P. Cómo se suman los números de los demas casos expresados? R. Se escriben los números que se quieran sumar unos debajo de otros, de manera que se correspondan las unidades absolutas, las decenas, las centenas, etc., formando
(E) Al ejercitar el Maestro á sus alumnos en la práctica de esta operacion i de las que siguen, cuidará de ponerles cuestiones í ejemplos prácticos de comercio ó de números concretos, á la manera que lo hemos hecho en los que se han puesto al fin de estas lecciones en comprobante de cada operacion, para que asi puedan hacer aplicaciones de las reglas de la Aritmética a los negocios de la vida. Con este objeto se ha anticipado el conocimjento del sistema legal de medidas.

-20 -

columnas verticales; se tira una raya por debajo para escribir con separacion el resultado, íprincipiando por la primera columna de la derecha, se reunen todas las unidades absolutas; si la suma no pasa de nueve, se escribe el número que resulte, debajo de dicha columna; si pasando de nueve compusiese una ó mas decenas cabales, se pone cero; pero si la suma tubiese no solo decenas sino tambien unidades, se escriben estas, it se reserva en estos dos úttimos casos una unidad por cada decena de unidades que se forme para agregarlas á las de la columna siguiente; por que segun el sistema de la numeracion, cada decena de unidades de un órden inferior, compone una unidad del órden inmediato superior. Se practica sucesivamente la mísma operacion con la segunda i demas columnas, í en llegando á la úllima, se escribe la suma de sus mímeros poniendo á su izquierda las nuidades de especie superior que se lleven; f el número que resulte debajo de la raya, será la suma pedida, la cual expresará unidades de la misma especie que los sumandos. V. el eј. $n{ }^{0}{ }^{0}$.
65. Cuando sea necesario sacar la suma de muchas partidas, para hacerlo con comodidad í acierto, se dividen en seis 6 mas partidas, segun se quiera, se forman de ellas sumas parciales, i de estas, la suma jeneral; pero es mejor acostumbrarse á hacer siempre la operacion de una vez. 66. P. Ea qué casos se usa de la adicion? R. Cuando se trata de averiguar cuanto componen juntas muchas cantidades de cosas relativas á una misma especie.
67. P. Hai algun medio para facilitar la operacion de sumar? R. Si, í es saber lo que componen juntos, de dos, en dos los números dijitos, cuyas sumas estan contenidas en la siguiente tabla que debe aprenderse de memoria.

-21 -

TABLA PARA SUMAR.

LECCION 4. ק

Pr a operacion de restar 6 de la sustraccion de los números entercs, i sus usos.
68. P. Cuál es la primera operación de disminuir? R. Es la de restar, que es averiguar la diferencia que haya entre dos números homojéneós. La operacion por medio de la cual se ejecuta esto, se llama sustraccion; la cantidad mayor, se llama minuendo; la menor, sustraendo; i el resultado de la operacion, resta, exceso ó diferencia. El minuendo $\{$ el sustraendo deben ser homojéneos, por una razon análoga á la expuesta en la adicion (62).
69. P. Cuántos casos pueden ocurrir en la sustraccion? R. Tres, á saber: Restar entre ś números dijitos: 2. ${ }^{\circ}$ Restar un dijito de un compuesto: $3 .^{\circ}$ I restar números compuestos. Para obtener la resta de los dijitos, se coloca el sustraendo debajo del minuendo, í de las unidades de este se disminuyen todas las contenidas en el sustraendo.
70. P. Cómo se restan los números de lós demas casos expresados? R. Se escribe el sustraendo debajo del minuendo de forma que se correspondan las unidades absolutas, las decenas, las centenas, etc. como en la adicion; se tira una raya por debajo, 1 empezendo por la primera columna de la derecha, se ve cuantas unidades faltan a la cifra del sustraendo para que tenga las mismas que el minuendo, 1 las que falten, se ponen debajo de dicha columna; se ejecuta lo mismo con las decenas, centenas, etc., f el número que resulte; debajo de la raya; será la resta que se busea, la cual expresará unidades de la misma especie que los números propuestos. V. el ej. n. ${ }^{\circ}$ 4.
71. Si algun guarismo del sustraendo fuese mayor que su correspondiente del minuendo, se lo ajrega á este, mentalmente, diez unidades íde esta suma se hace la reste; en este caso se reserva una unidad para agregarla al guarismo siguiente del sustraendo í contipuar la operacion. V. el ej. n. ${ }^{5} 5$.
72. P. En qué casos se usa de la sustraccion? R. Cuando de una cantidad mayor de cosas se quiere rebajar otra menor, siendo ambas de una misma especie, para saber la diferencia que se busca,

LECCION 5. \%

De las pruebas de la adicion i sustraccion.

73. P. Qué se entiende por prueba de una operacion aritmérica? R. Es otra operacion por medio de la cual nos cercioramos si la primera está 6 no bien hecha.
74. P. A qué se reducen las pruebas de la adicion i sustraccion? R. En jeneral, la operacion que debe servir de prueba de otra debe ser su opuesta, porque es mui raro que se compensen los errores; por esta razon la operacion de sumar se prueba restando, i la de restar, sumando, etc., aunque la mejor prueba, en todos los casos, es repetir la operacion dos ó mas veces para evitar equivocaciones.
75. P. Cómo se verifica la prueba de la adicion? R. El modo mas sencillo i que está mas en uso es el siguiente: practicada la primera sumas, se separa con una raya la primera partida sumanda de arriba, í sin contar con esta ni con la suma, se vuelven á sumar las demas partidas, comenzando siempre por la derecha; esta segunda suma se escribe debajo de la primera, se tira una raya, luego se restan dichas dos sumas; i si la

- 24 -

resta es igual á la primera partida de arriba, la operacion estará bien ejecutada.
76. P. Cómo se verifica la prueba de la sustraccion? R. Se suma la cantidad Ilamada sustraendo con la resta, í si en la suma sale el minuenda, la operacion estará bien hecha.

LECCION 6. *

De ta operacion de multiplicar númeras enteros; su abreviacion î usos.
77. P. Cuál es la segunda operacion de aumentar? R. Es la de multiplicar, que es tomar un número tantas veces como unidades tiene otro. L.a operacion se llama multiplicacion; el número que se ha de tomar cierto número de veces, se llama multiplicando; el que expresa las veces, multiplicador; í lo que resulta de la operacion se llama produoto. El multiplicando í multiplicador juntos se Ilaman factores del producto: este debe ser de la misma especie del multiplicando, porque en la adicion, la suma es de la especie de los sumandos; i el multiplicador, un númera abstracto que solo indique las reces que se ha de tomar el multiplicando. En algunas cuestiones conviene distinguir los factores; mas en el producto no influye el que se truequen sus oficios, porque el órden en que se coloquen los factores no altera el producto.
78. P. Cuál es el objeto de la multiplicacion? R. Abreviar la suma de muchas partidas que sean iguales entre si. Asi, 5 partidas de á 4 unidades, colocadas unas debajo de otras i sumadas, dan la suma 20: multiplicando el númera 4 por el $\begin{gathered}\text {, da igual producto. }\end{gathered}$
79. P. Cuántos casos pueden ocurrir en la multiplicacion? R. Tres, á saber: 10° Multiphcap

Un número dijito por otro: 2. ${ }^{\circ}$ Multiplicar un comb puesto por un dijito: $3 .^{v}$ I muttiplicar un compuesto por otro compuesto. Para obtener el producto de los números dijitos, basta saber la tabla de multiplicar.
80. P. Cómo se multiplica un número compuesto por un dijito? R. Se coloca el número dijito, que es el multiplicador, debajo de las unidades del compuesto, gue es el multiplicando, se tira una raya por, debajo, í principiando por la derecha se multiplican las unidades del multiplicando por el multiplicador í se escribe debajo de su fila correspondiente el producto parcial que resulte, si solo es de unidades; si contiene solo decenas, se pone cero; pero si tambien tubiere decenas I unidades, se escriben estas i se reserva en estos dos últimos casos una unidad por cada decena para agregarlas al producto siguiente. Prosiguiendo de este modo hasta la última cifra, se escribe su producto poniendo á la izquierda las utidades de especie superior que se lleven; í el número que resulte debajo de la raya, será el producto total que se busca. V. el ej. $\mathrm{n},{ }^{0} \mathbf{6}$.
81. P. Cómo se multiplica un número compuesto por otro compuesto? R. Se toma por multiplicador el que tenga ménos guarismos, por comodidad, í se escribe debajo del multiplicando como en la adicion; se tira una raya f luego se multiplica sucesivamente cada cifra del multiplicando por las unidades, decenas, etc, del multiplicador, observando la regla anterior; se van colocando estos productos parciales unos debajo de otros, es cribiendo la primera cifra de cada producto debajo de la cifra del multiplicador, por el que se multiplique; se tira otra raya, se suman finalmente estos productos parciales, i la suma será el producto total que se busca. V. el ej. $n .{ }^{\circ} 7$.
82. P. Puede abreviarse la multiplicacion?

- 26 -

R. Si, Señor: teniendo presente que la unidad multiplicada por la unidad o por cualquier número, da por producto la unidad ó el mismo número; que cero multiplicado por cero 0 cualquier número, da por producto cero; í ademas, las propiedades de los números enteros (61); se abreviará la operacion en los siguientes casos.
83. Primeró. Siempre que el multiplicando í el multiplicador esten representados por la unidad seguida de ceros á su derecha, ó uno solo de ellos, í el otro por cualquier otro número; se abreviará la operacion, en el primer caso, poniendo á la derecha del multiplicando, tantos ceros cuantos acompañen á la unidad del multiplicador; í en el segundo, se pondrá á la derecha del que esté representado por cualquier otro número, tantos ceros cuantos acompanien á la unidad seguida de ceros; i resultará en ambos casos el verdadero prodacto. V. el ej. n. ${ }^{\circ} 8$.
84. Segundo. Siempre que el mnltiplicando 6 el multiplicador, 6 ambos, esten representados por cualquier otro número con ceros á la derecha, se multiplican solamente los guarismos significativos, í se añaden despues á la derecha del producto total, tantos ceros como haya en ambos factores. V. el ej. n. ${ }^{\circ} 9$.
85. Ttrcero. Siempre que entre las cifras significativas del multiplicador hubiese uno ó mas ceros, no se multiplicará por ellos, í se pasa á multiplicar por la cifra significativa siguiente, colocando debajo de ella la primera cifra del produeto parcial que resulte de esta multiplicacion. V. el ej. $\mathrm{n} .{ }^{\circ} 10$.
86. P. En qué casos se usa de la multiplicacion? R. En los tres siguientes í sus análogos. Primero. Cuando se quiere hacer á un número, cierto número de veces mayor. En este caso, se multiplica el número propuesto, por aquel que,
eon sus unidades expresa las veces que se le quiere hacer mayor. V. el ej. $\mathrm{n} .{ }^{\circ} 11$.
87. Segundo. Cuando conocido el valor, peso, medida 6 circunstancia de una unidad 6 cosa, se quiere averiguar el de muchas. En este caso, se multiplica el valor, peso, etc. de la unidad, por el número de ellas, I el producto expresará unidades de la especie que se busca. V. el ej. $\mathrm{n} .{ }^{\circ} 12$.
88. Tercero. Cuando se quiere reducir unidades de especie superior, á unidades de una especie inferior determinada. En este caso, se multiplica el número de unidades de especie superior, por el número de unidades de especie inferior que compone una de la superior dada. V, el ej. ri. 13.
89. P. Segan lo expuesto ¿cómo se reduce un número de pesos fuertes á centávos? R. Agregando solamente á la derecha del número propuesto, de ceros, quedará reducido á centávos; porque esto equivale á multiplicar dicho número por 100 unidades en que se considera dividido el valor del peso fuerte (19).
90. P. Qué es necesario saber primero para poder ejecutar una multiplicacion? R. Los productos que resultan de multiplicar entre sí los números djjitos, que son los contenidos en la tabla siguiente.

T 4 BLA PARA MULTIPLICAR.

2,12
2, 3
2,14
2,, $5,, 10$
$2,, 6,12$
2,17
2, 8
$2,19,48$

3 por 1 son 3

4 por 1 son	4	
4	,	2
4	,	8
4	3	,
4	12	
4	,	5
4	,	16
4	,	6
4	,	24
4	,	8
4	,	28
4	,	9
4	,	36
4	0	0

5 por 1 son 5 5 ,, 2 ,, 10

7 por 1 son

7	,	2	,,	14
7	,	3	,	21
7	,	4	,	28
7	,	5	,	35
7	,	6	,	42
7	,	,	49	
7	,	8	,	56
7	,	9	,	63
7	,	0	,	0

8 por 1 son
8 ,, 2 ,, 16
$8,, 3,, 24$
8 ;, $4, \ldots 32$
$8,, 5,40$
8,, 6,, 48
$8,, 7,56$
$8,, 8,64$
8,, $9,, 72$
8, , 0 ,

9 por 1 son 9 9 ,, 2 ,, 18 $9,, 3,, 27$ $9,1,4,36$
$9,,, 6,, 54$
$\begin{array}{llll}9,1, & 7 \\ 9 & 8 & 72\end{array}$
$9,, 9,, 81$
$9,0,0$

- 29 -

LECCION 7.

De la operacion de dividir ó partir números enteros; su abreviacion í usos.
91. P. Cuál es la segunda operacion de disminuir? R. Es la de dicidir, que es disminuir un número dividí́ndolo en tantas partes iguales como las unidades que tenga otro por las que se divida; ó mas bien, es averiguar cuantas veces un número contiene á otro. La pperacion se llama division; el número que se divide o ha de contener á otro, se llama dividendo; aquel por el que se divide ó el que es contenido, divisor; el resuttado de la operacion cociente, el cual expresárá las veces que el uno contiene al otro; í si de la division sobra algo, esto se llama residuo. El dividendo í divisor juntos se llaman términos de la division 6 del cociente: este debe ser de la especie que se busca.
92. P. Cuál es el objeto de la division? R. Fsta operacion se considera como una especie de sustraccion abreviada, porque en ella se trata de averiguar las veces que un número se puede qui$\operatorname{tar} 6$ restar de otro.
93. P. Cuáutos casos pueden ocurrir en la division? R. Tres á saber: $1 .{ }^{\circ}$ Dividir un número dijito por otro: 2° Dividir un número compuesto por un díjito: 3.0 I un compuesto por otro compuesto. Para dividir un número díito por otro, i aun uno compuesto de dos guarismos por un dijito, basta saber la tabla de multiplicar; pues en este caso averiguando el número por el que se ha de multiplicar el divisor pará que dé el dividendo, ó el producto inmediatamente menor, este será el cociente.
91. P. Cómo se divide un número compuesto por un dijito? R. Se coloca el divisor á la derecha del dividendo, se tira entre los dos una raya perpendicular, 1 otra horizontal por debajo del divisor; luego se separa con una coma de la izquierda del dividendo uno 6 dos guarismos para que contengan, al divisor, sino cabe en el primero, por ser menor; se ve cuantas veces este dividendo parcial contiene al divisor, f el número hallado se pone debajo de la raya de dicho divisor; se comprueba este cociente multiplicándolo por el divisor, i el producto que resulte se resta de memoria del primero 6 dos primeros guarismos que se separaron del dividendo, i se escribe debajo de ellos el residuo que resulte; en seguida se forma otro dividendo parcial de eate residuo í del guarismo siguiente del dividendo principal, que se separa con la coma; se ve el número de veces que este nuevo dividendo contiene al divisor, í el que resulte, se pone en el cociente á la derecha del guarismo hallado ántes; se multiplica este segando cociente por el divisor, $\{$ el producto se resta del segundo dividendo parcial; se continúa asi hasta que no haya en el dividendo principal mas guarismos que tomar, \{ el número que resulte debajo de la raya del divisor, será el cociente total que se busca.
95. Si al fin de la division quedase algun residuo, se indicará la division de este por el divisor poniéndolo á la derecha del cociente sobre una raya 1 el divisor debajo para completar aquel; mientras no se efectue aquella, consideraremos dividida cada una de las unidades de que se componga dicho residuo en tantas partes iguales como unidades tenga el divisor, íque de estas partes se han tomado tantas como unidades haya en el residuo. En tal caso, el cociente se compondrá de dos partes; la una será un cierto námero de unidades enteras, í la otra, expresará partes de

-31

cada unidad dividida, que se llama fraccion θ quebrado, sobre cuya expresion i valuacion se tratará en las lecciones $1 .^{\circ} 13$ a $^{\text {a }}$ de la seccion 2 . $^{\text {a }}$
96. P. Qué otras reglas se han de tener presente para ejecutar bien esta operacion? R. Las siguientes: Primera. Que no se puede poner de una vez en el cociente mas de 9 , porque no se debe poner mas de un guarismo.
97. Segunda. Para que sea exacto el cociente que dé cada division parcial, es preciso que multiplicado por el divisor, dé un producto igual ó inferior al dividendo parcial, 1 que, por consigniente, el residuo sea menor que el divisor; porque si el producto no puede restarse del dividendo parcial, se habrá puesto de mas en el cociente; f si el residuo entre este producto i el mismo dividendo parcial es igaal 6 mayor que el divisor, se habrá puesto ie ménos.
98. Tercera. Que cuando se separa un guarismo del dividendo, í en él, juntamente con el residuo, si le hai, no eabe el divisor, se debe poner cero en el cociente; luego se baja este dividendo parcial, al que se agregará la cifra siguiente del dividendo principal, que se separa con la coma, para contipuar la operacion.
99. Cuarta. Que todo número cabe en sf mismo una vez, ó lo que es lo mismo, que si se divide un número por sí mismo, el cociente es 1. 100. Quinta. Que tedo número dividido por la unidad, da por cociente el mismo número. 101. Sexta. Que cero dividido por cualquier número, siempre da cero por cociente. V. el ej. n. ${ }^{0} 14$.
102. P. Cómo se dividide un número eompuesto por otro compuesto? R. Se escribe el divisor á la derecha del dividendo (94), f observando siempre las reglas dadas, se separan de la izquierda del dividendo con una coma los guarismos que
basten á contener ef divisor; se ve cuantas veces está contenido el primer guarismo de la izquierda del divisor en el primero 6 dos primeros de la izquierda del dividendo, si no cabe en el primero, 1 el cociente que resulte se comprueba primero mentalmente, 1 siendo exacto 6 apróximado [97], se pone debajo de la raya del divisor; se multiplica por cada uno de los guarismos del divisor, comenzando por el primero de la derecha, í cada producto de estas multiplicaciones parciales, se resta de memoria de cada uno de los guarismos del dividendo parcial, comenzando por el último que se separó con la coma; cuidando de agregar á este 1 demas, las decenas que convengan, siempre que no se pueda restar el primero f demas productos de la multiplicacion parcial, í de reservar una unidad por cada decena de las que se agregaron al dividendo, para agregarlas al segundo í demas productos 1 hacer las restas, caya diferencia se escribe debajo de cada uno de los guarismos de dicho dividendo. Para pasar adelante, se forma otro dividendo parcial del residuo que resulte i del siguiente guarismo del dividendo principal, que se separa con la coma, i se ejecuta la misma operacion; se continúa asi hasta concluir todo el dividendon, Cel número que resulte Jebajo de ta raya del divisor, será el cociente total que se busca. Si quedase algun residuo, se pone á la derecha'del cociente como se ha dicho [93]. V. el ej. n. ${ }^{\circ} 13$. 103. P. Cuando el dividendo es menor que el divisor ¿cómo se ejecuta la operacion? R. No pudiendo ejecutarse la division, se inditará esta ponierdo ambos términos en forma de quebrado (93), el cual se considerará como el cociente que se busca; el dividendo expresará en este cas̃o partes de una de las unídades de que se componga, considerándose cada una de estas dividida en tantas partes iguales comounidadestenga el divisor. V. el ej. n. 16.

$-33-$

104. P. Puede abreviarse la division? R. Si, Señor, en los siguientes casos: Primero. Siempre que el dividendo 1 el divisor, 6 solo este último, esten representados por la unidad seguida de ceros á su derecha, se abreviará la operacion ell el primer caso, borrando de la derecha del dividendo tantos ceros cuantos acompaien á la unidad del divisor, i lo que quede dẹl dividendo será el cociente que se busca; i en el segundo, se cortan de la derecha del dividendo tantos guarismos cuantos ceros acompaàen á la unidad del divisor; to que quede del dividendo es el caciente, ílos guarismos cortados, el residuo. V. el ej. n. ${ }^{\circ} 17$.
105. Segundo. Siempre que el dividendo í el divisor esten representados por cualquier otro número con ceros á su derecha, se borran en ambos términos tantos ceros como haya en el que tiene ménos, \& luego se hace la division con lo demas que quede. V. el ej. $n .^{\circ} 18$.
106. P. En qué casos se usa de la division? R. En los siete siguientes \& sus análogos: Primero. Guando se busca las veces que un número está contenido en otro. En este caso se divide el número que debe contener, por aquel que debe estar contenido. V. el ej. n. ${ }^{\circ} 19$.
107. Segundo. Cuando se quiere repartir á algunas personas cierto número de cosas, En este caso se divide el námero de las cosas por el de las personas. V. el ej. n. ${ }^{\circ}{ }^{2} 0$.
108. Tercero. Cuando se quiere dividir en partes iguales un número ó tomar la mitad, tercera, etc. partes de él. En este caso se divide el número propuesto por el que expresa las partes en que se ha de dividir, 6 , la parte que se ha de tomar. V. el ej. n. ${ }^{\circ} 21$.
109. Cuarto. Cuando conocido el valor demuchas unidades 6 cesas, se quiere averiguar el do-

- 34 -

üna. En este caso se divide el valor de las unidades δ cosas por el número de ellas, $\{$ el cociente expresará el valor de, una. V. el ej. n. ${ }^{\circ} 22$.
110. Quinto. Cuando conocido el valor, peso, medida 6 circunstancia de una unidad 6 cosa, se busca el número de unidades correspondiente á un valor, peso, etc. dado. En este caso se divide el valor, etc. dado, por el de la unidad, í el cociente expresará el número de las que se buscan. V. el ej. n. ${ }^{\circ} 23$.
111. Sexto. Cuando conocido el valor de una 6 mas partes de una unidad 6 cosa, se quiere averiguar el de la unidad entera. En este caso se divide el valor dado, por el quebrado que esprese las partes, $\{$ e! cociente expresará el valor de la unidad entera. Esta cuestion pertenece à la division de los quebrados doñde se dará el ejemplo.
112. Sétimo. Cuando se quiere redueir unidades de especie inferior á unidades de una especie superior determinada. En este caso se divide el nûmero de unidades de especie inferior, por el número que de estas componga una de las de especie superior dada. V. el ej. n. ${ }^{\circ} 21$.
113. P. Segun lo expuesto ¿cómo se reduce un número de centávos á pesos fuertes? R. Cortando con una coma, de la derecha del número propuesto, las dos primeras cifras, quedará hecha la reduccion; porque esto equivale á dividir dicho número por 100 unidades en que se considera dividido el valor del peso fuerte: las cifras que queden a la izquierda de la coma, serán los pesos que se buscan, ilas cortadas, expresarán el residuo en centávos, que, si fuesen significativas, se verá el valor que representan teniendo presente lo dicha á cerca de los centáyos (19).

$-35-$

LECCION 8.:

De las pruebas de la multiplicacion í division.

114. P. Cómo se prueban estas dos operaciones? R. La multiplicacion í la division se sirven mutuamente de prueba la una á la otra, lo mismo que la adicion 1 sustraccion.
115. Cómo se verifica fa prueba de la multiplicacion? R. Se parte el producto total por el multiplicador, í si sale al cociente el multiplicando, la operacion estará bien ejecutada.
116. P. Cómo se verifica la prueba de la division? R. Se multiplica el cociente por el divisor í se agrega el residuo, si lo hai: saliendo por producto el dividendo, la operacion estará bien hecha

SECCION 2. ${ }^{\infty}$

De la expresion, composicion í descomposicion de los números quebrados 6 mixtos.

LECCION 1.

De la expresion é escritura de los números quebrados ó fracciones comunes, isu clasificacion.-

Números mixtos.
117. P. Cuáles son números quebrados? R. Los que expresan una 6 mas partes de la unidad; como un cuarto de peso, dos tercias de vara, etc. I para entenderlo mejor, som aquellos que exprezan

Tas partes en que una unidad 6 cosa se divide i las que de ellas se toman.
118. P. De qué provienen en la Aritmética los quebrados? R. Regularmente de las operaciones de la division, cuando ademas del cociente, queda algun residuo que dividirse por el divisor, como se ha dicho (95); por cuya razon todo quebrado debe considerarse como una division indicada, en la que el numerador representa un dividendo, if el denominador, un divisor.
119. P. Cómo se expresan de palabra los quebrados? R. Ante todo es menester saber el nombre que, segun el número de partes en que dividimos 0 consideramos dividida la unidad, se da á cada una de ellas. Asi, cuando-la unidad está dividida en dos partes iguales, cada una de estas se llama mitad ó media unidad; cuando en tres partes, tercia ó tercio; cuando en cuatro, ciarta ó cuarto; cuando en diez, décima ó décimo; i de once en adelante, formando un nombre compuesto del námero de partes en que se divide la unidad, i de la terminacion ava ó aco.
120. P. Cómo se llaman los términos del quebrado? R. El que expresa las partes que se toman de la unidad dividida, se llama numerador, porque las cuenta ó numera; i el que expresa las partes en que se considera dividida la unidad se Ilama denominudor, porque da nombre al quebrado. Asi, en el quebrado un cuarto, el numerador es uno, i el denominador, cuatro.
121. P. Cómo se escriben los quebrados? R. El numerador encima del denominador con una raya entre los dos, asi $\frac{1}{4}$. En el comercio se acostumbra, por comodidad, escribir el numorador á la izquierda, un poco arriba del renglon; i el denominador á la derecha, un poco abajo, con una raya oblícua entre los dos, de esta manera $9 / 12$.

$-37-$

122. P. En qué clases se dividen los québrados? R. En propios é impropios ó fraccionarios.
123. P. Cuáles son quebrados propios? R. Los que tienen mayor denominador que el numerador; como $1 / 2,{ }^{3} / 4$, etc.
124. P. Guáles son quebrados impropios? R. Los que tienen el numerador igual ó mayor que el denominador; como $4 / 4,9 / 8$, etc.
125. P. De dos 6 mas quebrados ¿cúfl es el mayor? R. Teniendo un mismo δ igual denominador, será mayor el que tenga mayor numerador, porque se toman mayor número de páres; í teniendo ignal numerador, será mayor el que tenga menor denominador, porque las partes que se toman son de mas valor. Asi, en los quebrados $1 l_{4}$; ${ }^{1} 2 l_{4}$, es mayor ${ }^{2} l_{4}$; í en $\operatorname{los}{ }^{3} l_{4}:{ }^{3} l_{3}$, es mayor $3 l_{\text {a }}$.
126. P. Qué se ha de advertir á cerca de los quebrados? R. Que todos los quebrados que tengan el denominador igual al numerador, equivalen á un entero; porque vale tanto tomar todas las paries en que la midad se ha dividido como la unidad entera. De to que se infiere. que cualquier número se puede escribir como quebrado poniéndole la unidad por denominador. Asi para poner el entero 8, por ejemplo, en forma de quebrado, se trasformará en esta expresion $\$ / 1$.
127. P. Cuáles son números mixtos? R. Los que expresan unidades enteras 1 partes de la unidad; como $43 l_{4}$ ps., $52 / l_{3}$ vs., ete.

- 38-
 LECCION 2. ${ }^{\circ}$

De las propiedades de los quebrados comunes.-Sis reduccion á un comun denominador a simplifica-cion.-Modo de extraer los enteros de un quebrado impropio, ide reducir los números enteros í mixtos á quebrados impropios, para ejecutar con ellos las operaciones que converigan.
128. P. Guáles son las principales propiedades de los quebrados? R. Considerándose todo quebrado, segun se ha dicho, como una division indicada, existiran entre los términos de aquel las mismas relaciones que entre los términos de la division; de donde se infiere que sus propiedades son las siguientes: Primera. Que en multiplicando 6 en dividiendo el numerador de cualquier quebrado. por cualquier número, sin tocar al denominador, se aumenta 6 disminuye el valor del quebrado, V. el ej. n. ${ }^{\circ} 23$.
129. Segunda. Que en multiplicando ó en dividiendo el denominador de cualquier quebrado, por eualquier número, sin tocar al numerador, se disminuye ó aumenta el valor del quebrado. V. el ej. n. ${ }^{\alpha} 26$.
130. Tercera. Que en multiplicando 6 en dividiendo los dos términos de cualquier quebrado, por un mismo número, no se altera el valor de este, siño que solo muda de expresion. V. el ej. n. ${ }^{\circ} 27$.
131. P. Qué se deduce de la proposieion anterior? R. De la primera parte, que dos 6 mas quebrados pueden reducirse á un comun ó igual denominador, para poder ejecutar con facilidad las operaciones que convengan, í conocer cual de ellos es mayor; i de la segunda, que cualquier quebrado
puede simplificarse 6 reducirse ásu mas sencilla expresion, para presentar el resultado con la mayor sencillez.
132. P. Cómo se reducen los quebrados á un comun denominador. R. Multiplicando los denominadores de todos los quebrados entre sí, se tiene el comun denominador para todos; í multiplicando el numerador de cada quebrado por los denominadores de los demas, ménos por el suyo, se saca el nuevo nunerador para cada quebrado. V. el ej. n. ${ }^{\circ} 28$.
133. P. Cómo se simplifican 6 se reducen los quebrados á su mas sencilla expresion? R. Se divide el numerador í el denominador por un mismo número que esté exactamente còntenido en ámbos.
134. P. Cómo se conocerá si los dos términos de un quebrado son divisibles por un mismo número, í el número por el cual deben dividirse? R. Teniendo presente las reglas siguientes: Primera. Si ámbos términos del quebrado rematan en cero, serán divisibles por $10 . \mathrm{V}$. el ej. n. 029. 133. Segunda. Si ámbos términos del quebrado rematan en números pares; 6 uno en cero í otro en número par, serán divisibles por 2. V. el ej. n. ${ }^{\circ} 30$.
136. Tercera. Si ámbos términos rematan en 5 . 6́ uno en cero $\mathfrak{i ́ c}$ otro en 5 , serán divisibles por 5. V. el ej. n. ${ }^{\circ} 31$.
137. Cuarta. Si en ámbos términos las primeras dos cifras de la derecha representan un número exactamente divisible por 4 , todo el quebrado lo será tambien. V. el ej. n. ${ }^{\circ} 32$.
138. Quinta. Si sumando separadamente en ámbos términos sus guarismos como si fuesen unidades absolutas, dan 36 un número de veces 3 , serán divisibles por 3 ; 1 si dan 96 un número de veces 9 , serán divisibles por 9 . V, el ej. n. ${ }^{\circ} 33$.
139. Se omiten otras reglas relativas \& la
divisibilidad por otros números, por ser complicadas; i téngase entendido que tan solo aquellos quebrados cayos términos sean ambos exatamente divisibles por un mismo número, son reducibles; cuatquiera otro, será la expresion mas sencilla que: pureda representar, í por consiguiente será irreducible; íasi mismo, que para simplificar un quebrado impropio es preciso extraer primero los enteros que contenga, íluego se simplifica el residuo, si to hubiere.
140. Si se tratase, pues, de simplificar cualquier quebrado por el námero que resulte de aquellos divisores comunes, se harán por él cuautas divisiones se puedan; I si por este no se consigue la expresiun mas sencilla, se harán por uno de los ofros que convenga; I asi, hasta que el quebrado no tenga divisor comun, quedará hecha la reduccion. V. el ej. n. ${ }^{\circ} 3$ 3.
131. P. I en las reducciones i simplificaciones anteriores tho se altera el valor de los quebrados? R. De ninguna manera, porque ambos términos del quebrado se multiplican ó dividen por un mismo número.
142. P. Cómo se extraen los enteros de un quebrado impropio? R. Se divide el numerador por el denominador, f el cociente que resulte, será el número de unidades enteras que se busca. Si quedase algnn residuo, se pone á la derecha del eaciente en forma de quebrado como en las divisiones. comunes. V. el ej. n. ${ }^{\circ} 33$.
143. P. Cômo se reducen los enteros á quebrados impropios? R. Se multiplica el entero por el đenominador dado, \& el producto será el numerador de la expresion fraccimaria que sebosea, $\{$ cuyo denominador será e! dado. V. el ej. n. ${ }^{\circ} 36$.

13/. P. Cómo se reducen los números mixtos a quebrados impropios? R. Se multiplica el tukczo por el deaorainador del quebrado que le

-41 -

acompaña; al producto se agrega el numerador, \hat{i} á la suma se le pone por denominador el del quebrado. V. el ej. n. ${ }^{\circ} 37$.

LECCION 3. ${ }^{*}$

Do la valuacion de los quebrados en especie conocida.
145. P. Qué se entiende por valuar un quebrado? R. Expresar su valor en unidades de especie inferior á la principal á que el quebrado se refiera. Si, por ejemplo, quisiésemos saber á cuantos reales equivale el yuebrado $3 / 4$ de un peso, la cuestion se reduce á tomar 3 cuartas partes de 8 reales que tiene un peso, que son 6 reales.
146. P. Cómo se practica esta operacion? R. Teniendo presente el sistema legal de medidas (§ III), se multiplica el numerador del quebrado por el número que expresa las veces que la unidad en que se quiere valuar el quebrado está contenida en aquella á que se refiere el quebrado, i el producto se divide por el denominador; si de la division resulta un número mixto, í hai todavia unidades de especie inferior, se hace con el quebrado la misma operacion, ifse continúa asi hasta que no haya mas unidades de especie inferior; en cuyo caso, si queda todavia quebrado, se desprecia, si el numerador no llega á ser la mitad del denominador, ise anade en vez del quebrado una unidad á las unidades enteras de la especie última que se han sacado, si el numerador llega 6 pasa de la mitad del denominador. V. el ej. n. ${ }^{3} 38$.
147. Esta misma operacion se practicará con el quebrado de la division indicada en los númerog enteros (95 1 103), cuando se refiera á unidades de las del sistema legal indicado. V. el ej. n. ${ }^{\circ} 39$.

LECCION 4.»

De la adicion de los números quebrados i mixtos.
148. P. Hai algo que advertir al practicar las cuatro operaciones con los quebrados comunes? R. Si, Senor: que el quebrado que resulte de cada una de aquellas, se simplifica, si se puede (133), cuando se refiera á unidades abstractas; í se valúa (146), cuatido se refiera á unidades del sistema lezal de medidas, cuidando al efecto de extraer primero los enteros que contenga, (142), si dicho quebrado fuese impropio.
149. P. Cuántos casos pueden ocurrir al sumar números quebrados? R. Tres, á saber: $1 .{ }^{\circ}$ Sumar quebrados entre sí: 2. ${ }^{\circ}$ Sumar entre sí números mixtos: $3 .^{\circ} I$ sumar un ontero con un quebrado.

1ธั〇. P. Cómo se suman los quebrados entre si? R. Lo mismo que los enteros, colocándolos unos debajo de otros: luego, si tienen iguales, denominadores, se suman los numeradores, porque en ellos está el valor de ios quebrados; í á esta suma se le pone por denominador, el denominador comun, para saber la denominacion de aquellas partes. El quebrado que resulte será la suma que se busca, í se simplifica 6 valúa, segun convenga (148). V. el ej. n. ${ }^{\circ} 40$.
131. Si los quebrados tuviesen denominadores distintos, se reducen á un comun denominador, para que, trasformados en otros equivalentés á ellos de igual denominacion, puedan sumarse; 1 lueqo se hace la misma operacion que en el caso anterior. V. el ej, $\mathrm{n} 0^{0} 41$.
152. P. Cómo se suman entre sí los númé ros mixtos? R. Se colocan los quebrados á la derecha de los enteros; luego se reducen á un co-
mun denominador, si no lo tienen, despues se suman; i si de la suma resultan algunos enteros, se agregan á la suma de los enteros. V. el ej. n. ${ }^{0} 42$.
153. P. Cómo se suma un entero con un quebrado? R. Se reduce el entero á la especie del quebrado (144); í el quebrado impropio que resulte, expresará la suma pedida.

LECCION $5 \gamma^{2}$

De la sustraccion de los números quebrados 6 mixtos.

13月. P. Cuántos casos pueden ocurrir al restar números quebrados 1 mixtos? R. Tres, á saber: 1. ${ }^{\circ}$ Restar quebrados entre si: $2 .^{\circ}$ Restar entre sí números mixtos: $3 .{ }^{\circ}$ I restar un quebrado de un entero.

13̈3. P. Cómo se restan los quebrados entre si? R. Colocados como en la adicion, se reducen á un comun denominador, si no lo tienen, Juego se restan los numeradores, i á la resta se le pone por denominador, el denominador comun. El quebrado que resulte será la resta que se busca, í se simplifica ó valúa, segun convenga. (148). V. el ej. n. ${ }^{\circ} 43$.
136. P. Cómo se restan entre sí los números mixtos? R. Se ejecuta primero con los quebrados la misma operacion que en el caso anterior, í se restan en seguida los enteros. Si el quebrado del sustraendo fuese mayor que el del minuendo, se agrega al numerador de este, mentalmente, una unidad reducida á la denominacion del quebrado, lo que se verifica sumando su numerador con el denominador; i de esta suma se hace la resta: en este caso se reserva una unidad para agregarla al sustraendo de los enteros, al hacer
la resta de ellos. V. el ej. n. 44.
157. P. Cómo se resta un quebrado de un entero? R. Se toma tambien mentalmente una unidad, í reducida á la denominacion del quebrado, se resta de esta fraccion dicho quebrado, lo que puede hacerse restando el numerador del denominador; á la resta se le pone por denominador, el del quebrado, i se reserva como en el caso anterior, una unidad que se resta del entero. V. el ej. n. ${ }^{\circ} 40$.

LECCION 6. „

De la multiplicacion de los números quebrados 6 mixtos.
138. P. Cuántos easos pueden ocurrir al multiplicar números quebrados ímixtos? R. Cinco, á saber: 1.0 Multiplicar un quebrado por otro: 2. ${ }^{\circ}$ Multiplicar un entero por un guebrado 6 al contrario: 3. ${ }^{\circ}$ Multiplicar un entere por un mixto é al contrario: 4. ${ }^{\circ}$ Multiplicar un quebrado por un mixto ó al contrario: 5.0 I multiplicar un mixto por otro mixto.
159. P. Qué se ha de advertir de la multiplicacion de los números expresados? R. Que cuando el multiplicador es un quebrado propio, resulta el producto menor que el multiplicando; porque siendo menor que la unidad el multiplicador, el producto deberá ser menor. Esta operacion no viene á ser otra cosa que tomar del multiplicando la parte 6 partes que indica el quebrado multiplicador.
160. P. Cómo se multiplica un quebrado por otro? R. Colocados come en la adicion, se multiplica numerador por numerador, i denominador por denominador; poniendo por numerador el producto de los numeradores, f por denominador el producto de
los denominadores: el quebrado que resulte será el producto, el cual expresará partes de la misma unidad á que se refiera el quebrado multiplicando; tomándose por tal aquel factor de cuya especie es el producto que se busca; í se simplifica ó valáa, segun convenga (148) V. el ej. n. ${ }^{\circ} 46$.
161. P. Cómo se ejecuta la multiplicacion en los cuatro casos restantes? R. Cuidando ántes de poner el entero en forma de quebrado, (126), I de reducir el número mixto á quebrado impropio (14); quedan asi los dos factores de cada caso reducidos á quebrados, para poder ejecutar la multiplicacion como la de un quebrado por otro [160]. V. el ej, n. ${ }^{\circ} 47$.

LECCION 7.

De la dicision de los números quebrados í mixtos.
162. P. Cuántos casos pueden ocurrir:al dividir números quebrados 1 mixtos? R. Cinico, á saber: 1. ${ }^{\circ}$ Dividir un quebrado por otro: 2.0 Dividir un entero por un quebrado ó al contrario: $3 .{ }^{\circ}$ Dividir un entero por un mixto ó al contrario: $4 .{ }^{\circ}$ Dividir un quebrado por un mixto ó al contrario: 5. ${ }^{\circ}$ I dividir un mixto por otro mixto. En dichos casos se tomará por dividendo el número que convenga, segun la cuestion que se proponga, teniendo presente los usos de la division ; 106 al 112, í por divisor el otro término.
163. P. Qué se ha de advertir de la đivision de los números expresados? R. Que cuando et divisor es un quebrado propio resulta el cociente mayor que el dividendo; porque siendo el divisor menor que la unidad, deberá hallarse contenido mas veces.
161. P. Cómo se divide un quebrado por otro? R. Colocados como de ordinario, se multi-
plican en cruz; esto es, el numerador del dividendo por el denominador del divisor, i este producto se pone por numerador del cociente; se multiplica despues el denominador del dividendo por el numerador del divisor, í este producto se pone por denominador del cociente: el quebrado que resulte será el cociente, el cual expresará parles de la unidad de la especie que se busca; i se simplifica ó valúa, segun convenga (148). V.el ej. n. ${ }^{-} 48$.
163. P. Cómo se ejecuta la division en los enatro casos restantes? R. Cuidando antes de poner el entero en forma de quebrado, (126), i de reducir el número mixto á quebrado impropio (144), quedan asi los términos de cada caso reducidos á quebrados, para poder ejecutar la division como la de un quebrado por otro (164), sea mayor 6 menor el dividendo que el divisor. V. el ej. n. ${ }^{\circ} 49$.
166. Cuando se quiera tomar de un número cualquiera la parte ó partes que indique un quebrado propio, se invierten los términos de este, poniendo por numerador el denominador; í por denominador, el numerador: Inego se ejecuta la operacion como un quebrado por otro, í el resultado expresará la parte 6 partes que se buscan. V. el ej. n. ${ }^{\circ} 50$.

LECCION 8.

De los quebrados de quebrados.

167. P. Qué se entiende por quebrados de quebrados? R. Son una 6 mas fracciones que se refieren á otra fraccion que se mira como unidad; por ejemplo: $2 / 3$ de $4 / 5$. Lista expresion quiere decir, que se toman dos terceras partes de cuatro quintas de la unidad principal, en cuya expresion hace $4 / 5$ con respecto ${ }^{2} 2 / 3$ las veces de unidad. Esta
cuestion ocurre cuando se quiere saber el valor de algunas partes de otras partes de una cosa, como de una vara δ de una arroba, etc.
168. P. Cómo se reducen dichos quebrados á quebrado de la unidad? R. Se reducen á uno solo, multiplicando los numeradores í denominadores entre sí; poniendo por numerador, el producto de los numeradores; 1 por denominador, el producto de los denominadores; el quebrado que resuite será el que se busca, í se simplifica ó valúa, segun convenga. ($\mathbf{1 4 8}_{6}$. V. el ej. n. ${ }^{\circ} 51$.

SECCION 3.

De la expresion, composicion i descomposicion de los números complejos ó denominados é incomplejos.

LECCION 1. ${ }^{\otimes}$

De la expresion i escritura de los números complejos ó denominados é incomplejos; su reduccion de especie superior a inferior, ide esta en aquella; su trasformacion en quebrados comunes, ila de estos en números denominados, para ejecutar con estas trasformaciones las operaciones que convengan.
169. P. Cuáles son números denominados? R. Los números coneretos que expresan unidades superiores é inferiores de diferente especie relativas todas á un mismo jénero, que pueden reducirse á una sola; como 3 varas, 2 tercias, 4 pulgadas: las cuales, aunque de tres especies diferentes, son del énero de vara 1 pueden reducirse á pulgadas.
170. P. Cuáles son nímeros incomplejos? R. Los números concretos qiie expresan unidades de
una sola especie relativas á las del sistema legal de medidas; como 5 pesos 6040 reales.
171. P. Cómo se escriben los números denominados? R Se da principio por las unidades de especie superior, 1 á la derecha de estas, se ponen las unidades inmediatamente inferiores; 1 asi gradualmente las demas, poniendo al lado de cada especie el nombre que le corresponda, abrevido. V. el tj. n. ${ }^{0}$ 32.
172. P. Cómo se reducen los números denominados á su especie ínfima? R. Se multiplican las unidades de especie superior por el número de unidades de especie inmediata inferior que compone una de la superior, I á este producto se agregan las unidades que hubiese de dicha especie inferior; la sumaque resulte, se redace á la siguiente especie practicando la misma operacion; i asi en seguida hasta llegar á la especie infima del número propuesto. V. el ej n. ${ }^{\circ}$ §3.
173. P. Cómo se reducen los números denominados, de especie inferior á superior? R. Se divide, el número de unidades de especie inferior por el número que de estas compinga una de la especie inmediata superior, $\{$ el cociente que resulte, se reduce á la siguiente especic superior practicando la misma operacion, sin hacer caso del rosiduo que quede; í así en seguida hasta llegar á la especie última superior. Los residuos que queden de estas divisiones, se pondrán despues, de mayor á menor, segun su especie, á la derecha de dicha especie superior; los cuales expresarán unidades de la misma especie yue los dividendos respectivos. V. el ej. n. ${ }^{\circ} 34$.
174. P. Cómo se trasforma un número denominado en quebrado comun? R. Se reduce á su menor especie ($172, \boldsymbol{j}$ el uúmero que resulfe, se pone por numerador del quebrado; i por denominador, una unidad de la especie mayor reducida á la misma especie menor. Y. el ej. n. ${ }^{\circ}$ 33.
173. P. Cómo se trasforma un quebrado comun en número denominado? R. Se practica con el quebrado la misma operacion establecida para valuar los quebrados comunes [146], i quedará hecha la trasformacion. V. el ej. n. ${ }^{\circ} 56$.
176. P. Qué es necesario tener presente para ejecutar bien las operaciones de composicion i descomposicion de los números denominados? R. El sistema legal de medidas explicado antes ($\$$ III).

LECCION 2.

De la adicion de los múmeros denominados.
177. P. Cómo se suman los números denominados? R. Se escriben los números que se quiera sumar, unos debajo de otros, de manera que se correspondan las unidades de cada especie; se tira una raya por debajo, i se principia á sumar por la columna de especie inferior: si la suma de estas unidades no llega á componer una unidad de la especie inmediata superior, se eseribe segun resulte; si compusiese una 6 mas unidades cabales de dicha especie inmediata, se pone cero; § si ademas, kubiese unidades de la misma especie inferior, se escriben estas, i se reservan las que hubiese de la inmediata superior para sumarlas con ellas, con las que se hará la misma operacion; asi so continúa hasta sumar las de especie superior, f́ el nómero que resulte debajo de la raya, será la suma que se busca. V. el ej. n. ${ }^{\circ} 57$.

LECCION 3. ${ }^{\infty}$

De la sustraccion de los múmeros denominados.
178. P. Cómo se restan los números ded-
nominados? R. Se escribe el sustraendo. debajo del minuendo, como en la adicion; se tira ana raya por debajo, i principiando por la columna de especie inferior, se resta cada especie de unidades del sustraeudo de las correspondientes del miauendo. Si alguna especie de unidades del sustraendo fuese mayor que la correspondiente del minuendo, se le agrega á esta, mentalmente, una unidad reducida á la denominacion de dicha especie, I de esta suma se hace la desta: en este caso se reserva una unidad para agregarla á las unidades de Ja especie inmediata superior del sustraendo í continuar la operacion; í el número que resulte debajo de la raya, será la resta que se busca. V. el ej. n. ${ }^{\circ} 58$.

LECCION 4.~

De la multiplicacion de los números denominados.

179. P. Cómo se multiplican los números. denominados? R. Hai varios mélodos, pero el mas sencillo es el siguiente: se trasforma el multiplicando f el multipticador en guehrados comunes (174), 1 luego se ejecuta la multiplicacion como la de un quebrado por otro (160). V. el ej. n. ${ }^{\circ} 59$.
180. Tambien puede ocurrir el tener que multiplicar un quebrado, un entero σ un número mixto, por un denominado ô al contrario; en estos casos, pouiendo el entero en forma de quebrado, trasformando el número mixto if el denominado en quebrados comunes, se ejecuta la multiplicacion de los dos quebrados que resulten, como la de un quebrado por otro (160). V. el ej. n. ${ }^{\circ} 60$.

LECCION $5 . \%$

De la division de los números denominados.
181. P. Cómo se dividen los números denominados? R. Hai varios métodos, pero el mas seacillo es el siguiente: se trasforman el dividendo 1 divisor en quebrados comunes (174], I luego se ejecuta la division como la de un quebrado por otro (164). V. el ej. n. 61.
182. Ademas, puede ocurrir el tener que dividir un quebrado, un entero ó un námero mixto, por un denominado 6 al contrario; en estos casos, poniendo el entero en forma de quebrado, trasformando el número mixto i el denominado en quebrados comunes, se ejecuta la division de los dos quebrados que resulten, como la de un quebrado por otro (161), sea mayor 6 menor el dividendo que el divisor. V. el ej. n.o 62.

SECCION 4. 2

De la expresion, composicion í descomposicion de la fraccionss decimales.

LECCION 1.

De la expresion í escritura de las fracciones decimales.
183. P. Cuáles son fracciones decimales? R. In jeneral, son aquellas que tienen por denominador la unidad seguida de ceros, como ${ }^{3} / 10,{ }^{27} / 100$, etc.; 6 mas bien, son unas fracciones compuestas
de partes que van siendo de diez en diez veces menores que la unidad absoluta ó principal, cuyas diversas subdivisiones entan sujetas á una lei constante para medir las cantidades menores que ella. 184. P. Caál es el objeto de las fracciones decimales? R. La teoría de los quebrados comunes 1 de los números denominados, que se acaba de explicar, embaraza mucho los cáleulos, en yazon de la niuguna lei que siguen los denominadores; i para evitar este inconveniente, se ha inventado la division de la unidad en partes decimales, para reducir el cálculo de las fracciones al sencilla sistema de los enteros, con algunas modificaciones; cuyas partes, al mismo tiempo que son un caso particular de los quebrados comunes, Henan el objeto de facilitar i uniformar todas las operaciones.
183. P. Cuál es la lei $o ́$ principio que sirve de base á dicho sistema? R. La misma de la numeracion de los enteros, en la cual se, ha visto que la unidad absoluta 6 principal, por cada lugar que avanza á la izquierda, adquiere un vaJor relativo de diez en diez veces mayor, 6 continaamente décuplo, formando lo que hemos llamado decenas, centenas, millares, etc., í constituyende una escala 6 serie ascendente; de la mistha manera podrá volverse esía misma unidad de diez en diez veces menor, 6 continuamente subdécupla, $\{$ constituyendo una escala ó serie descendente, considerando dividida dicha unidad en diez partes ignales, que se Haman décimas de la unidad; eada debima, en otras diez partes, que se Haman centésimes; cada centésima, en otras diez partes, que se llaman milésimas; if asi sucesivamente, resultarán las diesmilésimas, cieninitésimas, millonésimas, etc., de la unidad; cuyas partes se Haman fracciones decimales, ó números decimales.
186. P. Qué se infiere de esto? R. Que
cada unidad absoluta, no solo equivale á diez dễ cimas, sino tambien á cien centésimas, á mil milésimas, etc.; cada décima, no solo equivale á diez centésimas, sino tambien á cien milésimas, á mil diezmilésimas, etc.; siendo de este modo fácil convertir cualquier número de partes de una denominacion superior, ell otra equivalente inferior, como convertir las decenas, centenas, millares, etc., en unidades simples. Asi, por ejemplo, 2 décimas, 3 centésimas í 4 milésimas, equivalen á 234 mi Jésimas, por la misma razon que 2 centenas, 3 decenas 14 unidades, equivalen á 234 unidades simples. 187. P. Cómo se escriben las fracciones decimales? R. Por la uniformidad de los denominadores, í la lei que sigue cada parte de ir sienda diez veces menor, solamente se escribe el numerador de estas fracciones, como si fuesen enteros, poniendo á la derecha de las vidades absolatas, en el primer lugar, las cifras que designan décimas; en el seggundo, las centécimas; en el tercero, las milésimas; en el cuarto, las diezmilésimas; I asi sucesivamente las cienmilésimas, millonésimas, etc.; enunciando el número de partes decimales que se trate de escribir, convertido en la denominacion inferior; I para que no se confunda la parte que designa enteres con la decimal, se las separa con una coma, que se escribe entre las unidades absolutas i las décimas. Si el nûmero propuesto no contiene enteros, esto es, si fuese una fraccion propiamente dicha, se pone un cero en el lugar asignado á las unidades absolutas; é igualmente se ocupan con ceros los lugares de las unidades que no se enuncien en la expresion verbal de la fraccion, observándose en lo demas las reglas dadas para escribir los números enteros (56 al 57). Para que tampoeo se confunda la coma decimal con las de la division de períodos, en las fract

Ciones Jargas, se hace aquella mayor que las otras. V. el ej. n. 063 .
188. P. Cómo se leen las fracciones decimales cuando estan escritas? R. Se recorre primero la fraccion propuesta, diciendo desde la coma a la derecha: en el primer lugar, décimas; en el segunde, centésimas; i asi sucesivamente, para venir en conocimiento de la denominacion del último guarismo, la cual se apunta; despues se recorre de derecháá izquierda, como en los enteros (60), i se leen como estos, expresando al fin la denominacion correspondiente á dicho último guarismo. Si el número consta de enterus í decimales, se leen primero aquellos, fen seguida estos, observando para el efecto las reglas dadas. V. el ej. n. 64.

LECCION 2. 『

De las propiedades de las fracciones decimalos, f su reduccion á una misma denominacion.
189. P. Guáles son las propiedades de las fracciones decimales? R. Ademas de las propiedades que hemos observado ya en ellas, de entueiarse 1 escribirse como los enteros, gozan tambien de otras no menos notables, en consideracion á su inmensa utilidad, í las principales son: Primera. Como el valor de cualquiera de las cifras de una combinacion decimal, dependa solo del lugar que ocupe con respecto á la coma decimal, se sigue que: el valor de una fraccion decimal no varía, aunque se añadan $o ́$ supriman ceros á su derecha, sino que solo muda de expresion; porque esto eqnivale á multiplicar 6 dividir el numerador iel denominador que se le supone (183), por la unidad seguida de tantos ceros como se añadieron ó $^{\prime}$ suprimieron, lo que no altera sti valor (130). Tamnoto se altera el valor de un número entero, cuan-

55

do -a su derecha se le pone la coma, i luego unt δ mas ceros.

190 Segunda. Por el contrario, agregando ceros á la izquierda de una fraccion decimal, entre la coma í la primera cifra de ella, se le hace tantas veces menor, como expresa la unidad seguida de tantos ceros cuantos se aùadieron; porque variará el valor de cada una de las cifras, I de consiguiente de toda la combinacion; pues la cifra que antes expresaba décimas, ahora expresará centésimas; etc.; verificándose en este í en el caso anterior to contrario de lo que se observa en las propiedades de los enteros (64). V. el ej. n. ${ }^{0} 63$.
191. Tercera. Como el oficio de la coma decimal sea separar las cifras que pertenecen á enteros de las que se refieren á partes de la uniđad, se deja fácilmente ver que, con solo mudar el lugar de la coma, variará el valor de cada una de las cifras, i de consiguiente de toda la combinacion. En efecto, si se corre la coma uno, dos 6 mas lugares hácia la derecha, se vuelve el uúmero decimal diez, ciento 6 mas veces mayor, como expresa la unidad seguida de tantos ceros como lugares se corrió la coma; porque vendran á ser cifras de enteros algunas de las que antes eran partes decimales, I de consiguiente resultará aumentado el valor de toda la combinacion.
192. Cuarta. Por el contrario, corriendo 1a coma uno ó mas lugares hácia la izquierda, se vuelve el número tantas veces menor, como expresa la unidad seguida de tantos ceros como lugares se corrió la coma; porque vendran á ser cifras de la fraccion algunas de las que antes eran de enteros, I de consiguiente deberá resultar menor el número propuesto. V. el ej. $\mathrm{n},{ }^{\circ} 66$.
193. P. Qué uso se hace de las propiedades expresadas? R. En la primera se funda la reduccion de las fracciones decimales á una misma
-56
denominacion, 1 en las tercera í cuarta, la abrevidcion de la multiplicacion $\{$ division de ellas.
194. P. Cómo se reducen los námeros decimales á una misma denominacion? R. Segun la expuesto antes (189), basta aǹadir á los que tengan menes cifras decimales, los ceros necesarios para igualar á la fraccion que tenga mas. V. el ej. n.० 67.
193. P. De dos 6 mas fraceiones decimales zcuál es la mayor? R. Reducidas á una misma denominacion, será mayor, la que represente mayor zuúmero de unidades. V. el ej. n. ${ }^{\circ} 68$.

LECCION 3.2

De la trasformacion de los quebrados comunes ids los números denminados en decimales, para ejccutar con estas trasformaciones las operaçiones que convenga.
196. P. Cómo se trasforma un quebrado comun en fraccion decimal? R. Se divide el numerador por el denominador; pero si el quebrado es propio, no contendrá el dividendo al divisor, nit resultará entero alguno, i asi se pone cero al cociente, í en seguida la coma decimal; luego seconvierte el dividendo en décimas, agregándole un cero á su derecha, i sc ve el número de veces. que contiene al divisor, i el nứmero hallado 'se poneen el cociente, 6 cero si no cabe; se multiplica por el divisor if se resta. Si aun queda residuo, se convierte en centésimas, agregándole un cero, se practica la misma operacion; i se continúa asi, hasta hallar un cociente exacto 6 . aproximado. $\mathbf{V}_{\text {. }}$. el ej. n.o. 69.
197. P. Cómo se conoce que una fraccion comur puede couvertirse exactameate en fraccion decimal? R. Cuande su demominador sea nu prop
ducto que resulte de multiplicar por sí mismo el 26 el $5, \sigma^{\text {el }} 5$ por el 2 cierto número de veces, como 8, 16, etc.; 230,50 , etc. Fuera de estos casos es imposible una exacta conversion, por mas que se prolongue la operacion; pero puede aproximarse la fraccion decimal que se busca, al valor de la fraccion propuesta, de modo que solo difiera en una decimal determinada; para lo cual, se saca en el cociente una decimal mas de aquella hasta la cual se quiera aproximar, i luego se agrega á esta una unidad mas, evando la siguiente llegue 6 pase de cinco, la cual se borra. En el comercio solo se aproxima hasta las centésimas. V. el ej. n. ${ }^{\circ} 70$.
198. Se omite la trasformacion de las fracciones decimales ell comunes, porque en el comercio mas se usan aquellas, por la facilidad que ofrecen para los cáleulos; í asi, mas bien nos ocu paremos de la trasformacion de dichas decimales, escritas en forma de enteros, en otras equivalentes, escritas como. las comunes, porque estas trasformaciones son de un contínuo uso en el comercio. 199. P. Como se trasforma una fraccion decimal, escrita bajo la forma de enteros, en otra equivalente, bajo la forma comun? R. Se pone por numerador la combinacion de eifras que estê á la derecha de la coma, omitiendo todos los ceros que haya á la izquierda de la primera eifra signifreativa; il por denominador, la unidad seguida de tantos ceros como cifras haya, sin exceptuar ninguna, á la derecha de la coma; donde advertiremos que esta hace oficios de denominador. V. el ej. $\mathrm{n},{ }^{\circ} 71$.
200. Si el número propuesto consta de enteros i decimales, se pone por numerador toda la cantidad, suprimiendo la coma; i por denominador, la unidad seguida de tantos ceros como cifras haya á la derecha de la coma. V. el ej. n. ${ }^{\circ} 72$.
201. P. Cómo se trasforma una fraccion decimal eserita como las comunes, en otra equivalente, bajo la forma de enteros? R. Se coloca el numerador á continuacion de la roma, de modo que haya á la derecha de esta, tantas cifras como ceros haya en la expresion del denominador; por lo cual, se ponen los ceros necesarios entre la coma í la primera cifra significativa del numerador, siempre que en la expresion de este, no haya tantas cifras como ceros, en la del denominador. V. el ej. n. ${ }^{0} 73$.
202. Si dicha fraccion fuese impropia, se separan, con la coma, de la derecha del numerador, tantas cifras como ceros haya en el denominador; quedando asi representada la fraccion propuesta, por otra de enteros í decimales. V. el 'êj. n. ${ }^{\circ} 74$.
203. P. Cómo se trasforma un número denominado en fraccion decimal! R. Se reduce primero á quebrado comun (174), íluego se trasforma en fraccion decimal (196). V. el ej. n. ${ }^{\circ} 75$.

LECCION 4. 2

> De la valuacion de las fracciones decimales en especie conocida.
204. P. Cómo se valúan las fracciones decimales? R. Se multiplican por el número que expresa las veces que la unidad en que se quiere valuar la fraccion esta cuntenida en aquella á que se refiere dicha fracción, i de la derecha del pro~ ducto se separan con la coma, tantas cifras como las que contenga la fraccion propuesta; las cifras que queden á la izquierda de la coma, seran las unidades enteras gue se buscan, i las separadas, partes decimales de dichas unidades, que, si fue

-59 -

sen significativas i hubiese todavia unidades de especie inferior, se hace con ellas la misma operacion. Si al fin queda fraccion, se desprecia, si la cifra de las décimas no llega á 5 ; í se añade, en vez de aquella, una unidad á las cifras enteras de la especie última que se han sacado, si las décimas llegan 6 pasan de 3. V. el ej. n. ${ }^{\circ} 76$,

LECCION 5. ${ }^{\text {p }}$

De la adicion de las fracciones decimales.
200. P. Hai algo que advertir al practicar las cuatro operaciones de las fracciones decimales? R. Sí, Señor; que habiéndose sujetado las fracciones decimales á la lei de la numeracion de los enteros, i conseguido por este medio reducirlas fácilmente á una misma denominacion, se sigue que: sean números enteros, mixtos ó puramente decimales, los que ocurran al calcular dichas operaciones, se pueden efectuar estas como si aquellos fresen enteros, sin mas diferencia que la que se advertirá en sus respectivos casos; í la de vahar las partes decimales que resulten al fin de cada operacion, cuando se refieran á unidades del sistema legal de medidas, observando para ello las reglas dadas en la leccion anterior.
206. P. Cómo se suman los números decimales? R. Se reducen á una misma denominacion, si no la tienen (194), í se escriben unos debajo de otros, de manera que se correspondan las unidades enteras, las décimas, centésimas, ete., í las comas decimales; se efectua la operacion como en los enteros, i de la derecha de la suma se separan con la coma tantas cifras, para decimales, como tenga uno cualquiera de los sumandos. V. el ej. n. ${ }^{\circ} 77$.
207. En la práctica se puede omitir la reduc-
cion de los números á una misma denominacion, con tal que se tenga cuidado de escribirlos en la forma que se ha dicho, í de separar de la derecha de la suma tantas cifras, para decimales, como haya en el sumando que tenga mas.

LECCION 6. ${ }^{\infty}$

De la sustraccion de las fracciones decimales.
208. P. Cómo se restan los números decimales? R. Se escribe el sustraendo dehajo del minuendo, como en la adicion, reducidos á una misma denominacion, si no la tienen (194); Juego se efectua la operacion como en los enteros, 1 de la derecha de la resta se separan con la coma, tantas cifras para decimales, come haya en uno cualquiera de los números propuestos. V. el tj. n. ${ }^{\circ} 78$.

LECCION 7.

De la multiplicacion de las fracciones decimales.
209. P. Cómo se multiplican los números decimales? R. Se coloca el multiplicador debajo del multiplicando, i se efectua la operacion como en los enteros, prescindiendo de la coma decimal; 1 de la derecha del producto, se separan con la coma, tantas cifras para decimales, como hyaa en ambos factores, 6 en el que solo las contenga. V. el ej. n. ${ }^{\circ} 79$.
210. Si el prodacto no contiene las cifras necesarias para poder separar las decimales, se supliran, poniendo á su izquierda los ceros necesarios, 1 otro ademas, para indicar que el producto no contiene enteros. V. el ej. n. ${ }^{0} 80$.
211. P. Con qué objeto se separa en el
producto tantas cifras decimales como habia en los factores? R. Con el de hacerlo tantas veces menor, cuantas se habian hecho maynres aquellos, por haber prescindido de la coma decimal en la multiplicacion.
212. P. Cómo se abrevia la multiplicacion de un número decinal por $10,100,1000$, etc.? R. Segun Jo expuesto antes (191), basta correr la coma, hácia la derecha del multiplicando, uno, dos, etc. lugares, como ceros tenga el multiplicador, supliendo con ceros los guarismos que fatten para ejecutar la operacion; en cuyo último caso, el producto expresará enteros, V. el ej. n. ${ }^{\circ} 81$.

LECCION 8. ${ }^{\infty}$

De la division de las fracciones decimales.
213. P. Cómo se dividen los números decimales? R. Se coloca el divisor á la derecha del divideado, reducidos ambos términos á una misma denominacion, si no la tienen (194), i se efectua la operacion como en los enteros, prescindiendo de la coma decimal, i el cociente será entero. V. el ej. n. ${ }^{0} 82$.
214. Si de la division quedase algun residuo, en vez de ponerlo al cociente en forma de quebrado comun, se continúa la division por decimales (196), poniendo antes á la derecha de las unidades enteras vel cociente, la coma decimal, para que no se confundan con las decimales que resulten de esta operacion, i se aproxima la fraccion hasta la decimal que se quiera (197). V. el еј. $n .{ }^{\circ} 83$.
215. De la misma manera se puede continuar ia division indicada en los números enteros (93 i 103 ; i aun efectuar la division del os deci-
males，cuando el dividendo sea menor que el di－ visor，cuidando antes de reducir ambos términos á una misma denominacion（194）．

216．P．I por las alteraciones que se ha－ cen con los términos de la division bno se altera el valor del cociente？R．No，Seǹor：porque el reducir ambos términos á una misma denominacion， no cambia su valor；i el prescindir de la coma， equivale á multiplicarlos por un mismo número， lo que no altera el cociente．

217．P．Cómo se abrevia la division de un número decimal por $10,100,1000$ ，etc．？R．Se－ gun lo expuesto antes（192），basta correr la coma decimal，á la izquierda del dividendo，tantos lagares como ceros tenga el divisor，supliendo con ceros los guarismos que falten para ejecutar la operacion， f otrọ ademas para indicar que el cociente no con－ tiene enteros．V．el ej．n．${ }^{\circ} 8$ \＆ ．

218．P．Cómo se prueban las cuatro opera－ ciones elementales de los números quebrados，de－ nominados 1 decimales？R．Del mismo modo que las de los enteros．
—偕開开胹—

PARTE SEGUNDA.

DE LAS DIFERENTES COMBINACIONES DE

LAS OPERACIONES DE COMPUSICION I DESCOMPOSICION, ÓSEA, DE LAS APLICACIONES DE LA ARITMETICA A
LOS USOS MAS FRECUENTES DE LA SOCIEDAD.

LECCION 1.2
Teoría de las razones i proporciones.
219. P. Qué es razon? R. Es la comparacion que se hace de dos cantidades, con los objetos siguientes: ó para averiguar la diferencia que haya entre ellas; que se llama razon aritmética ó por diferencia; ó cuàntas veces la una contiene á la otra q̧ue se llama razon jeométrica ó por cociente.
220. P. Cómo se escriben las cantidades que se comparan? R. Para indicar que se comparan por diferencia, se les separa con un punto, asi 12.4; i cuando por cociente, con dos puntos, asi 12:4, en cuyos signos se enuncia es \dot{G}, I se lee en ambos casos: doce es á cuatro.
221. P. Cómo se llaman dichas cantidades? R. La cantidad que se compara, como el 12 del ejemplo anterior, se llama antecedente; aquella con que se compara, como el 4, se llama consecuente; í ambas cantidades juntas, términos de la razon. El resultado de la comparacion, se llama exponente de la razon.
222. P. Cómo se halla el exponente de la razon aritmética? R. Restando el consecuente del aute-
cedente. Verificando esto con la razon 12.4, por ejemplo, resulta la diferencia 8 , que ès su exponente, porque $12-4=8$; advirtiéndose que cuando el consecuente es mayor, se resta al contrario, í se antepone al exponente el signo menos, para indicar que no solo no es mayor el anteeedente, sino que le falta aquella cantidad para igualar al consecuente.
223. P. Cómo se obtiene el exponente de la razon jeométrica? R. Dividiendo el antecedente por el consecuente. Verificando esto con la razon $20: 5$, por ejemplo, resulta el cociente 4 , que es su exponente, porque $20: 3=4$; siendo de advertir que, cuando el antecedente es menor que el consecuente, se ponen los términos en forma de quebrado (103).
224. P. Qué otra denominacion tienen las razones? R. Si el antecedente es igual al consecuente, se llama razon de iqualdad, como 4:4; si mayor, de mayor desigualdad, como 4:2; si menor, de menor desigualdad, como 2:4.
223. P. Qué uso tienen las razones aritméticas? R. Ninguno en el comercio; por cayo motivo se prescindirá de ellas, i se tratará solamente de las jeométricas.
226. P. Cómo se consideran las razone̊s jeométricas? R. Como quebrados comunes, tomando por numerador el antecedente, 1 por denominador, al consecuente; de lo que se deduce que pueden escribirse como aquellos, simplificarse, reducirse á un comun denominador, 1 multiplicarse 6 dividirse sus dos términos por un mismo número, sin alterar su valor, para facilitar las cálculos de sus continuas aplicaciones.
227. P. Como se comparan dos razones jeométricas? R. Cotejando sus exponentes, para saber si son iguales 6 cual de ellas es mayor. Las razones $8: 4=2,16: 3=2$, por ejemplo, son iguales, por-
que tienen el mismo exponente, que es 2 ; fla razori $12: 3=4$ es mayor que la razon $10: 5=2$, porque el exponente de la primera es 4, el de la segunda es 2:
228. Tambien pueden compararse para saber la razon en que se hallan. se dice que dos razones son directds, cuando ambas son de mayor 6 menor desigualdad if dan exponentes iguales, como estas $8: 4=2$, i $10: 5=2,6 \quad 2: 4=2 / 4=1 / 2$, í $3: 6=3 / l_{6}=1 / 2$.
229. Se dice que dos razones son inversas, cuando una es de mayor desigualdad i otra de menor, que dari exponentes contrarios, como estas $8: 4=8$, $(226)=2 l_{i} ; 5: 10=6 l_{10}=1 l_{2}$, que es inverso de $2 l_{1}$; pero, cambiando de lugar los términos de una de èllas, v. g. de la segunda, resultan directas i sus exponentes iguales, como se ve $8: 4=2$ i $10: 5=2$.
230. P. Qué es proporcion jeométrica? R. Ës la comparacion de dos razones jeométricas directas que dan exponentes iguales; to qué tambien sé Hama equicociente. Las cantidades que las component se llaman proporcionales (F). Las razones directas 8:4 if 10:3, por ejemplo, forman ambas una proporcion, porque 8 contiene á 4, dos veces, como 10 á 5.
231. P. Cómo se escribé una proporcion jeométrica? R. Se pone la primera razon, í en seguida la segunda, séparadas con cuatro puntos, en cuyo signo se enuncia como. La proporcior indicada en el ejemplo anterior, se escribe así 8: $4:=10: 5$ í se lee: ocho es a cuatro, como diez es á cinco.
232. P. De cuintos términos consla toda proporcion? R. De cuatro, á saber: antecedente î
(F) Algunos autores reconocen proporciones intrersas, llamando asi á las que constan de razones dé ésta clase; pero, como ù equcociente exije qüe los éponentes de sus dos pazónes sear iguales. se ve que con razones inversas no se le pucde formar, en el sénfido jenuino de esta pa:abra:
consecuente de la primera razon, í antecedente it consecuente de la segurda; de los cuales, el primero if cuarto, se Haman extremos; í el segundo 1 tercero, medios.
233. P. Cómo se forma una proporcion jeométrica? R. Se escriben dos cantidades cualesquiera, que formarán la primera razon; luego se multiplican ó dividen sus dos términos por un mismo número cualquiera, i el resultado se pone por segunda razon; quedando asi formada la proporcion, porque tas dos razones seran ignales. Sean, por ejemplo, 12 i 4 las cantidades dadas para la primera razon; multiplicándolas por un número cualquiera, corro ef 2 , resultan 24 i 8 para la segunda, i se tendrá la proporcion 12:1:没i:8. 231. P. En qué se dividen las proporciones jeométricas? R. En discretas i contínuas. Se llama proporcion discreta, la que tipne sus términos medios diferentes, como esta 12:6::8:4; i contínua, la que los liene iguales, como esta 12:6::6:3, Ia cual se abrevia potiendo solamente los extremos í uno de fog medios, en cayo caso, sus propiedades se diferenciam de las de la discreta. Se omite el tratar de las contínuas, porque tienen relacion con las operaciones de elevacion ápotencias í extraccion de raices, que uo se han ensenado, porque no tienen uso en el comercio; íse hablará solamente de las discretas. 235. Cnal es la propiedad fundamental de Ja proporcion jeométrica discreta? R. Consiste en que el producto do los extremos es igual al de los medios. En laproporcion discreta anteriorse tienc $12 \times 4=68$ $=48$; luego hai proporcion eutre sus términos. 236. P. Qué se deduce de la propiedad anterior? R. Algunas otras, i las principales son: Primera. Cuando el producto de dos números es igual al producto de otros dos, estos cuatro números pueden formar ura proporcion, tomando por extremos los dos factores del un proy
ducto, if por medios, los otros del otro. En efecto, si se tiene $4 \times 103=6 \times 10=60$, se podrá formar esta proporcion $4: 6:: 10: 15$.
237. Segunda. Conocidos tres términos de una proporcion jeométrica, se puede siempre hallar el cuarto, sea el que fuere, dividiendo el producto de los medios por el extremo conocido, cuando el que se busca es el otro extremo; 1 dividiendo el producto de los extremos, por el medio conocido, cuando el desconocido fuere el etro medio. En dichos casus, el término desconocido se indiea con una x, para ocupar su lugar; i resuelta la proporcion, se pone en lugar de ella, el términa hallado. Sea, por ejemplo, la proporcion $x: 9:: 2: 6$ en la que falta el primer término, I en cuỵo lugar se ha puesto la x : aplicando la regla, es decir, dividiendo el producto de 9×2, que son los medios, por el extremo conocido 6, se obtiene èn el cociente 3 , que es el término que se busca, $\{$ resulta $3: 9:: 2: 6$.
238. Tercera. Si cuatro cantidades estan en proporcion, siempre lo estarán, aun cuando camhien de lugar los extremns 6 los medios, lo que se llama atternar; ó se pongan los medios en lugar de los extremos 6 al contrario, lo que se llama invertir; 6 muden de lugar las razones, lo que se llama permutar; porque, en dichas trafformaciones, el producto de los extremos será siempre igual al de los medios: de donde se signe que: dada una proporcion, se le puede dar ocho formas diferentes, como se verá en los ejemplus siguientes -
1.
2. Sea la proporcion.......... \quad Alternando la $1 . \approx: 2: 6$;
3. \sim Invirtiendo la 1. ع 9:3::6:2;
4. * Permutando la 1. $\omega \ldots \ldots .$. 2:6::3:9. Ete.
239. P. Para qué se trasforman los términos de una proporcion? R. Para dos usos principales, á saber: Primero. Para conseguir que el
término desconocido pase á ocupar el Jugar del cuarto término đe la proporcion, si no está en él. Si, por ejemplo, tuviesemos la proporcion $x: 9:: 2: 6$, para hacer pasar la x al cuarto término, harémos las trasformaciones siguientes.-

Proporcion primitiva,	$x: 9: 2: 6,6$
Permutando	2:6::x:9.
Invirtiendo	6:2:9:9

240. Segundo. Para hacer ver que se puede multiplicar ó dividir los dos antecedentes ó los dos consecuentes de una proporcion por un mismo número, \sin alterarla. Se emplea esta propiedad para simplificar fas proporciones, cuando sus terminos se hallan expresados por números mui altos, 6 cuando son fraceionarios, para convertirlos en enteros 1 facilitar los cálculos. Asi, en la proporcion 36:2::18:x, por ejemplo, dividiendo ambos antecedentes por 18 , resulta $2: 2: 1: 1: x=1$, cuyo resultado es el mismo que el que se hubiera obtenidoantes de la simplificacion. Sea ahora la proporcion $2 / 3: 12:: 1 / 2: x$; reduciendo $10 s$ dos antecedentes a un comun denominador, resulta $4 / 6: 12:: 3 / 6: x$, i. suprimiendo los denominadores (lo que equivale á multiplicar ambos quebrados por el denominador comun, 6, í sacar los enteros del producto), se obtiene la siguiente proporcion, expresada toda en números enteros $4: 12: 3: x=9$, que es el mismo resultado que se huliera obtenido, pero con mas dificultad. antes de la simplificacion.
241. P. Qué otra propiedad se observa: en las razones íproporciones jeométricas? R. La siguiente: que dos ó mas razones 6 proporciones, colocadas unas debajo de otras, pueden multiplicarse entre sí, esto es, antecedente por antecedente, etc.; los productos que resulten formarán razones 6́ proporciones que se llaman compuestas; de cuyar propiedad se hace uso para facilitar los cálculos.
242. P. Qué aplicacion tiene la teoría explicada sobre las razones i proporciones jeométricas? R. Resolver las diferentes cuestiones que se fundan en el conocimiento de dicha teoría, que se presentarán en las lecciones siguientes.

LECCION 2.s

De la regla de tres.

213. P. Qué es regla de tres? R. Se llama

 aś el método que se emplea para determinar la cantidad desconocida de una cuestion, que esté en proporcion con otras dadas.244. P. De cuántas maneras puede ser la regla de tres? R. De dos, á saber: simple ó compuesta. Es simple, cuando en el enunciado de la cuestion, se dan tres cantidades conocidas I una por conocer. Bs compuesta, cuando se dan mas de tres cantidades conocidas í una por conocer. Tambien puede ser directa ó inversa, segun gue dichas cantidades se enuncien en razon directa 6 inveraa -2.28 í 329 L
245. P. Cómo se llaman las camtidades quie dan oríjen á la regla de tres simple? R. Be las tres que se dan conocidas, hai siempre dos de una misma especie, que se ilaman priacipates; futra de diferente, que se llama relatica, de cuya especie es la cantidad incognita que se busca.
246. P. Cómo se resuelve la regla de tres simple? R. Come toda la dificultad consiste en arreglar los términos en razon directa, para que puedan formar proporcion íque la incognita oeupe siempre el cuarto, se planteará primero del modo siguiente: se ponen en la primera razon las cantidades principales, en este órden: de mas á menes, cuando la cantidad que se busca sea menor que la relativa conocida; I de menos á mas, cuando sea mayor; en seguida se pone la relativa conocida, por antecedente de la segunda razon, i una x en lugar

- 80 -

de la incoguita; luego se resuelve, multiplicando los medios entre sí, I partiendo este producto por el extremo conocido: el cociente que resulte, será ta cantidad que se busca. V. el ej. $1 .^{\circ} 8$. .
247. P. Cómo se resueive la regla de tres compuesta? R. Antetodo es menester ailvertir que, á las cantidades principales de la regla de tres simple, acompanan en la compuesta, otras, que denotan algunas circunstancias, como de tiempo, espacio, precio, fuerza, etc., que exijen la formacion if resofucion de tantas reglas de tres simples, cuantas sean las circunstancias que acompaǹen á cada cantidad principal, para hallar el valor de un solo resultado; pero es mas expedito reducir estas varias reglas á una sola, del modo siguiente. Se multiplica cada cantidad principal por las circunstancias que le correspondan, i los dos productos que resulten, se ponen por términos de la primera razon, obseriando el orden indicado para el planteamiento de la regla de tres simple; lacgo se pone la relativa conncida f la x, í se resuelve como en dicha regla. Y. el ej.n. ${ }^{\circ} 80$.

LECCION 3.

De la regla de interes.

218. P. Qué es regla do interes? R. Es in método que enseǹa á determizar to que se debe pagar ó recihir por el uso de uns cantidad de dinero, prestada, con ciertas condiciones. La cantidad prestada se llama capital; 1 lo que se paga 6 cobra por su uso, se llama inferes ó rédito.
219. P. Cómo se estipula el interes? R. A razon de un tanto por ciento al mes 6 al año; siendo de advertir, como antes se dijo, que para estos cálculos, se consideran los meses divididos igualmente en 30 dias; í el año, en 360, que redituan tanto como los 365 del año civil.
220. P. De cuántas maneras puede ser el
interes? R. De dos, á saber: simple 6 compuesfo. Se llama interes simple, el que se paga solo por el capital; i compuesto, el que se paga por el capital í los intereses que se dejan de pagar.

23̈1. P. Cómo se resuelve la regla de interes simple? R. Segun los casos que ocurran. Cuando se buscan losintereses correspoudientes á un capital cualquiera, en una unidad de tiempo, como ini mes é un aǹo, se resolverá par medio de la regla de tres simple 246 , tomsudo por cantidades principales, la que sirve de base, que es 100, i el capital dado; ípor relativa, el tanto por ciento mensual, 6 anual, sin anotar los tiempos que se comparan, por ser ambos la unidad el resultaifode la operacion expresará los intereses que se buscan. V. el ej, n. ${ }^{\circ} 87$.

20゙2. El mismo resulfado que por la regla anterior, se hallará, sin formar proporcion, multiplirando el capital dado por el tanto por ciento estipulado, í dividiendo el producto pos 100.
233. Cuando se buscan las intereses correspondiontes á un capital, en mencis ó mas tiempo de un mes 6 de un año, las cantidades que expresan los tiempos que se conimaran, deben figurar, e:a este caso, como cincuas!ancias, reduciendo aquellos á dias, í luego se ejecula la operacinn como en la reyla de tres compursta 2㣙): el resultado de la operacion expresará los intereses que se huscan. V, el ej. .1. ${ }^{\circ} 88$.
254. Eil mismo resultado que por la regla anterior, se hallará, sin poner proporcion, multiplicaado el capital dado por su tiempo, reducido á dias; este producto se multiplica despues por el tanto por cientomensual, 6 anual, segun lo pida la cnestion, í el resultado se divide por 3,000 , en el primer caso; \& por 35,000 , en el segundo.

2äă. Si se quiere saber á cuánto asciende el capital prestado ílos intereses hallados, se agregan estos al capital, í la suma que resulte expre sará el total que se busca,

$-72-$

E56. P. Cómo se resuelve la regla de intepes compuesto? R. Se buscan los intereses correspondientes al primer mes ó año, í se agregan al capital primitivo, para formar otro nuevo, que es lo que se Ilama capitalizar intereses; con este se hace lo mismó, al fin del segundo mes 6 año; í asi sucesivamente hasta el último mes ó año que pidiere la cuestion; el resultado final expresará el capital primitivo aumentadó de los intereses compuestos que se buscan. Esta operacion se verifica por medio de proporciones; (251); pero es mas sencillo ejecutarla como se ha dicho en el n. ${ }^{\circ} 252$. V, el ej. n. 89.

LECCION 4.

De la realer de descuento.

257. P. Qué es descuento? R. En jeneral, es la rebaja ó diminucion que se hace de una canz tidad determinada, á razon de un tanto por ciento. 2588. P. Cuántas clases de descuentos hai? R. Dos, a saber: uno que versa sobre pagarés de comercio de plazo no cumplido, i otro sobre letras de cambio, billetes nacionales, etč; 6 aforos, comisiones, corretajes, etc., para el pago de derechos.
258. P. Cómo se resuelve la regla de descuento sobre pagarés de comercio? R. Como se acostumbra fijar en ellos un plazo it un tanto por ciento de interes mensual, en caso de demora, se ha convenido tambien en que el deuḍor tenga el derecho de abonarlos anticipadamente con la dednecion del mismo tanto por ciento estipulado, f en proporcion al tiempo anticipado; así, pues, dado este tiempo í el interes, se resuelve la cuestion por medio de una proporcion, como se ha dicho en el nûmero 253,6 abreviando la operacion como en el número $2{ }^{\circ}$ '; el resultado expresará la cantidad que debe descontarse del valor del pagaré. V. el ej. n. ${ }^{0} 90$.
259. P. Cómo se resuelve la regla de des-
cuents en jeneral? R. Atgunas veces ocurre elt tener que comprar 6 vender una cantidad de mereaderias 6 valores de cualquiera especie, como letras de cambio, billetes, etc., con la rebaja de un tanto por ciento: en estos casos, se resuelye la cuestion, sin poner proporcion, multiplicando la cantidad propuesta por el tanto por ciento que se estipule, á dividiendo el producto por 100: el cociente que resulte expresará la cantidad que debe descontarse de la propuesta, V. el ej. n. 91.
260. Del mismo modo se resuelven las diferentes cuestiones sobre aforos, comisiones, corretajes, ect.: el resultado de la operacion expresará los derechos que deben pagarse. V. el ej. n. ${ }^{\circ} 92$.
261. P. Dado un capital, que se ha empleado en un negocio, f la ganancia, pérdida ó gasto gue ha producido, ¿¿cómo se averigua el tanto por ciento que le corresponde de dicha ganancia, etc., cuando se ignora? R. Formando una proporcion; pero mas sencillamente, multiplicando lo que produjo el capilal, por 100 , i partiendoel producto por el mismo capital; el cociente que resulte expresará el tanto por ciento que se busea. Y. el ej. n. ${ }^{\circ} 93$.

LECCION 5. *

De la reg/a do aneaje ó reduccion de medidas.
263. P. Qué es reg'a de aneaje? R. Es el procedimiento que se emplea para reducir las medidas de un pais á las de otro; para lo cual.es necesario saber de antemano la mútua relacion que tienen entresí. 264. P. Manifestadme ta relacion en que estan algunas medidas extranjeras de mas uso en el comercio, con las nacionales? R. En los números 33 al 36 ya se trató de ellas, í se manifestó el tanto por ciento que producen de aumento ó diminucion con respecto á las medidas bolivienas; ahora manifestaremos el número que de la una especie equivale á ciento de
la otra, para facilitar los cálculos, cuya relacion se hallará en la tabla que va al fin de esta leccion.
263. P. Cómo se resuelve la regla de aneaje? R. Por medin de una regla ile tres simple, tomando por cantidades principates el número propuesto f el otro término de la relacion que sea de Ja especie del propuesto; i por relativa, el utro término de la misma relacion: el resultado expresará el número de unidades de la especie que se busca. V. el ej. n." 9 .
266. El mismo resaltado que por la regla anterior, se hallará, sin formar proporcion, del modo siguiente. Para reducir medidas extranjeras á nacionaIes, se multiphra el número de aquellas por el de las nacionales que corresponda á ciputo de las extranjeras; í el producto se divide por 100 ; i, para reducir medidas nacionales á extranjeras, se multiplica el número de aquellas por 100, í el producto se divide por el número de las nacionales que corresponda á ciento de las exiranjeras.

Tabla para la reduccion de medidas.

100 metros, á......................... 118 varas.
100 anas de Brabante, á.......... \&1 varas.
100 yardas, á 108 varas.
100 ellem de Bremen, í 68 varas.
100 Hlem de Hamburgo il Leipsick, a.. 67 varas.
100 ellem de Viena, á............. 92 varas.
100 ellem de Berlin, á............. 79 varas,

LECCION 6. 2

De la regla de cambio exterior.

267. P. Qué se entiende por cambia exterior? R. El número de monedas de una nacion que se estima como equivalente de otro númera de.
mnnedas de la otra, teniendo en consideracion la relacion ell que esten por su valor intrinseco, δ la establecida por el curso de los negocios, que la alteran produciendo variacienes, llamadas estado del cambio.
268. P. Cómo se resuelve la regla de cambio? R. Por medie de la reyla de tres simple, como se ha dicho en el número 363 , 6 sin formar proporcion, como en el námero 266; el resultado de la operacion expresará la cantidad,que se busca. V. el ej. no 9 .

1.ECCION 7. *

De la regla conjunta.

269. P. Qué es regla conjanta? R. Es el procedimiento que se emplea para reducir las monedas f medidas de un pais á las de otro, cuando no se conoce la relacion directa que tienen entre sí, sino por el intermedio de otras.
270. P. Cómo se resuele la regla conjunfa? h. Se escriben unas dehajo de otras, í en columna, les razones que proponga la cuestion, cuidando de que el primer antecedente sea de la misma especie que el námero cuya equivalencia se busca; que los demas antecedentes sean de la misma especie que el consecuente de la razon que antecede, íque el último consecuente sea de la misma especie que la cantided buscada. Hecho esto, se multiplican entre si los antecedentes (menos el último relativo á la especie que se busca), ílo mismo los consecuentes; en seguida, se resuelve como una regla de tres simple, tomando por cantidades principales estos dos productos, I por relativa, el último antecedente que se exceptuó de la multiplicacion; f el resultado expresará el número de unidades de la especie que se busca. Y. el ej. n. 96 .

LECCION 8. 2

De la regla de compañia.

271. P Qué es regla de compañia? R. Es el procedimiento que se emplea para determinar lo que corresponde de ganancia 6 pérdida á carla uno de muchos companeros ó socios que han puesto un capital en un fondo comun, para alguna especulacion, en proporcign al capital que puso cada uno. 272. P. En qué clases se divide la regla de compañia? R. En simple i compuesta ó con tiempo. Se llama simple, cuando el capital de cada socio permanece un mismo tiempo en el fondo; I compuesta, cuando permanece distinto tiempo. 273. P. Cómo se resuelve la regla de compaǹìa simple? R. Se suman los capitales cont que los socios hayan contribuido; i para encontrap la ganancia ó pérdida que corresponde á cada uno, se plantea una regla de tres para cada socio, tomando por cantidades principales, el fondo ó la suma de los capitales í la que resulte de ganancia ó pérdida total en la especulacion, f por relativa, el capital con que coatribuyó cada socio; el resultado de cada operacion, expresará la cantidad proporcional que se busca de gan:ncia ó pérdida para cada socio. V. el ej. n. ${ }^{\circ} 97$.
272. P. Cómo se resuelve la regla de compañia compuesta? R. Se reduce á la regla simple, multiplicaudo el capital que puso cada socio por el tiempo que permaneció en el fondo, í estos productos se consideran como capitales puestos en el fondo por un mismo tiempo; íluego se resuelve la proporcion como en el caso anterior. V. el ej. n. ${ }^{\circ} 98$.

LECCION 9. ${ }^{2}$

De la regla de aligacion í de promedios.
273. P, Qué es regla de aligacion? R. Es

-77

el procedimiento que enseǹa á determinar el precio medio ó calidad media de la mezela hecha con dos 6 mas cosas, cuando se dan conocidas las cantidades que la han de formar I sus circunstancias de peso, medida, precio, lei, calidad, etc.; en cuyo caso se llama regla de aligacion simple, ó de promedios: 0 el que enseña á determinar la razou en que se han de mezelar ó tomar varias cosas, para obtenerlas de un precio 6 calidad media, determinada; en cuyo caso, se llama regla de aligacion compuesta.
276. P. Cómo se resuelve la regla de aligacion simple? R. Se multiplican las cantidades que se hayan de mezclar 6 tomar, por sus precios ó circunstancias respectivas, i la suma de estos productos se divide por la suma de las cosas: el cociente que resulte expresará el precio 6 término medio que se busca. V. el ej. n. ${ }^{\circ} 99$.
277. P. Cómo se prueba esta operacion? R. Se multiplica la suma de las cosas por el precio 6 calidad media que se obtenga; $\{$ si et producto es igual á la suma de sus valores, la operacion estará bien ejecutada.
278. P. Cómo se resuelve la regla de aligacion compuesta? R. Se escribe foera de una llave el precio medio 6 calidad dada, 1 dentro de ella, los precios de las cosas; cuidando de escribir hácia arriba del precio medio, los precios que sean mayores que él, 千 bácia abajo, los que sean menores: luego, si no fueren tantos los sưperiores como los inferiores, se hace que sean iguales, repifiendo en donde falte, uno cualquiera de los que sean menores en número, hasta que sean tantos los unos como los otros: en seguida se resta el precio medio de cada uno de los mayores, í cada ma de estas diferencias se escribe frente de cualquiera de los menores; despues se resta cada uno de los menores, del precio medio, í cadar dife-
rencia se anota frente de cualquiera de los $m a \rightarrow$ yores, con la conveniente separacion. Los números asi hallados expresarán la razon (G) en que se han de mezclar ó tomar las cosas; i su suma, la cantidad de mezcla correspondiente al precio ó calidad medıa. V. el ej. n.0 100.
279. P. Cómo se prueha esta operacion? R. Se multiplican las cosas por sus precios; í, si la suma de estos productos fuere igual al que resulte de maltiplicar la suma de las cosas, por el precio medio, estará bien ejecutada.
280. Estas cuestiones son suceptibles de una de estas dos determinacionés: Primera. Puede pedirse que se forme una cantidad determinada de mezcla, para obtenerla á un precio medio, dado. En este caso, se busea primero la razon en que deben mezclarse los jeneros (278), í luezo se forman tantas reglas de tres simples, como sea el número de estos, tomando por cantidades principales la suma de las razones i la cantidad que se quiere de mezcla; i por relativa, cada una de las razones sucesivamente: el cuarto término de cada proporcion, indicará la cantidad que debe tomarse del jénero é cosa, cuyo precio esté al lado de la relativa con que se la formó; í sumados estos términes, daran la cantidad de mezela que se pida.. V. el ej. n. ${ }^{2} 101$.
281. Segunda. Que en la mezcla, cuatquiera que sea, haya de entrar una cantidad determinada de mio de sus componentes, para obtener aquella á un precio medio, tambien dado. En este caso, se bisea, como en *el anterior, la razon en que se pueden mezclar los jéueros (2i8), íluego se forman tantas proporciones, menos una, como sea el número de estos; tomando por can-
(G.) Esta palabra no tiene aqui el mismo sentido que en las proporciones, í solo sirve para designar las cantidades que de diversa especie ó circunstancja entran en una mezcla,
tidades principales la razon en que entre, en la mezcla obtenida, la especie que se quiere introducir en cantidad determinada, í el número que exprese esta misma cantidad; i por relativas, las demas razones sucesivamente: el cuarto término de cada proporcion expresará las razones en que debe hacerse la nueva mezcla, la cual se obtendrá en la misma cantidad que la primera. V. el ej. n. ${ }^{\circ} 102$.

LECCION 10. 0

De la regla de reduccion de pagos.

282. P. Qué se entiende por reduccion de pagos? R. Es el procedimiento que se emplea para averiguar el plazo medio de varios pagarés que se cumplen en diferentes fechas, cuando se quiere verificar el pago de ellos en un mismo plazo, de manera que ninguna de las partes sufra pérdida.
283. P. Cómo se halla este plazo medio? R. Se multiplica el valor de cada pagaré por su respectivo plazo, redacido á dias, í la suma de los productns se divide por la sama de los valores de dichos pagarés: el coniente quẹ resulte expresará los dias del plazo medio yne se busca, de donde se deducira ficilmente la fecha en que debe verificarse el pago. V. el ej. n. 103.
284. P. Cómo se prueba esta operacion? R. Se multiplica el plazo medio que se obtenga por la suma de los valores de los pagarés; í si el producto es izual á la suma de los productos de los valures. de los pagarés por sus respectivos plazos, la operacion estará bien hecha.

LECCION 11. »

De la regla de falsa posicion.

283. P. Qué es regla de falsa posicion? R. Es el procedimiento que se emplea para encontrar un

$-8 \theta^{\circ}-$

cuarto término proporcional á otros tres, de los cuales soló uno' es conocido, porque lo indica la cuestion; otro, supuesto arbitrariamente por el calculador; iel último, dependjente deł número que se ha supuesto.
286. P. Cómo se resuelve esta regla? R.

Se supone ur número cualguiera en lugar del verdadero; is si la cuestion solo expresare el resultado que debe obtenerse del número que se busca, tómese del supuesto las partes δ^{\prime} los productos que ella indique (es decir; la mitad; el tercio, 6 el duplo; el triplo, 6 lo que sea); súmense estas partes 6 estos productos, i fórmese una regla de tres simple; tomando por cantidades principales esta suma í el número indicado err la cuestion; ípor relativa, el númerớ supuesto: el cuarto término expresará la cantidad que se busca. V. el ej. n. ${ }^{\circ} 104$.
287. P. Cómo se prueba esta operacion? R. Sujetando el númuro eneontrado á las condiciones que exija la cuestion, para obtener el resultado que ella expresa; i, si las llena todas, estará bien hecha.
288. En estas cuestiones; que de ordinarió se presentan bajo formas mui variadas, suele exjirse que, para obtener el resultado que piden, haya de sumarse ó restarse de otro númerơ determinado, el que se obtuviere del supuesto; lo cual debe hacerse con el cuarto término hallado, if no con el número supuesto.
289. Los autores dividen esta regla en simple í compuesta; Jlamando simplé á la que acaba de explicarse; i compuesta, á aquella en que, para hallar el número que se busca, e's preciso hacer dos suposiciones; pero se ha omitido esta, porque la simple sola resuelve todas las cuestiones dé este jénero, í con mayor facilidad que la compuestá

FIN DE LAS LECCIONES.

- 81 -

APENDICE.

sistema métrico decimal frances.

Breves seremos en la exposicion de este sistema, que rije actualmente en Francia i otras naciones: su teoría es la misma que la de las fracciones decimales, que ya hemos explicado, de las cuales es una aplicacion. Por lo expuesto en el número 13 í en la nota que le corresponde, se hallará el lector en estado de apreciar las ventajas que ofrece este nuevo sistema de medidas, para facilitar los cálculos; í de cuya nomenclatura vamos á ocuparnos.

En este sistema, los números denominados son decimales, í se fundan todos en el METRO, medida lineal δ de lonjitud, que sırve de tipo á las demas, í cuya dimension es igual á una diez-millonésima parte de la distancia que hai del polo al ecuador de nuestro globo.

Para medir las superficies pequeñas, la unidad principal es el metro cuadrado; í para las grandes, se toma por unidad eì AREA, que es un cuadrado de diez metros por lado.

Para las de capacidad es el LITRO, que es un cubo que tiene por lado la décima parte de un metro.

Para el peso de los cuerpos, es el GRAMO, que pesa tanto como un volumen de agua destilada, íá cierta temperatura, que pueda contenerse en on cubo que tenga por lado una centésima parte de metro.

Para los volúmenes se usa el metro cúbico, que es un cubo que tiene por lado un metro; í el ESTERIO, para la leña, que tambien es un metro cúbico.

Para las monedas sirve el FRANCO, que es una pieza que, pesando cinco gramos, contiene nueve décimas de plata pura, í una de cobre.

Para expresar las unidades décuplas de cada una de las medidas indicadas, se les antepone las palabras griegas siguientes: dECA, para las decenas; hecto, para las centenas; puilo, para las unidades de millar; miria, para fas decenas de ià.: í para expresar las unidades subdécuplas, se les antepone las palabras latinas siguientes: deci, para las decimas de la unidad; centi, para las centésimas; mili, para las milésimas: todo to cual se ve en las tablas siguientes, en las que se señalan con asterisco las denominaciones que no. estan en uso, í que solo se designan por el valor que las representa.

metros.	areas.
Miriámetro. 10000	Miriárea * 10000
Quilómetro. 1000	Quiloárea * 1000
Hectómetro. 100	Hectoárea. 100
Decámetro. 10	Decárea. 10
MET	A
Decimetro. 0,	De
Centímetro. 0.01	Centiarrea. . . . 0.01
Milimetro. 0, 0,001	Miliárea. , 0,001
TEDIDAS DE CAPACIDAD. \| . MEDIDAS DE PESO.	
Miráitro * . . . ${ }_{\text {Litros }} 10000$	Miriágramo * 10000
Qutólitro * 1000	Quilogramo. 1000
Hectólitro. 100	Hectiogramo. 100
Decálitro 10	Decágramo. 10
LITRO. 1	GRAMO.
Decílitro. 0.1	Decígramo... 0.1
Centílit:o. 0,01	Centíramo. 0.01
Mililitro * 0,001 , Miligramo. \& 0.001	
La medida llamada ESTERIO está stijeta a la misma les: el FRANCO se divide solamente en diez í en cien	
partes, que se llaman decimos i ceintrmos. Este sistema se adoptó en Chile, por lei de 29 de	
Enero de 18彳8. en la ciul se 'lijó, ademas, la' correspondencia entre las medidas' espanfolas il las métricas, en "la proporcion siquiente:	
Una yara equivale a metros. 0,836 , mat	
Una vira cuadrada, a . 0.699 metros cuadrados.	
Un pié cuadrado, á . $\quad 7,76$ decímetros cuadrados.	
Una vara cúbica, a. 0,	
Un cuartillo, á... 1,1	ditros.
Una fanega, á 97 lıtros, $6 \quad 0,97$ hee	
Una arroba de peso, á	
Una libra, á . . 0 , 16	
Una onza, á ... 0,0237	
Un grano, á . . . 0	0r99 gramos.
Una euadra cuadrada, í 137,21 ár	

EJEMPLOS.

A QUE SE REFIEREN LAS CITAS.

EJEMPLO N. ${ }^{1}$. Quiero representar en cifras el número seis billones, trescientos cuarenta \& cinco millones, doscientas mil, ochocientas setenta i tres unidades simples. Como el número es crecido, lo escribiré segun ta regla, período por períotlo, del modo siguiente: escribo primero un 61 dos puntos, para representar las seis unidades de billon, que son las de especie superior; inmediatamente á la derecha se sigue el período de los mitlares de millon, 1 observando que no se han enunciado las centenas, decenas i unidades de ét, pongo en su lugar tres 000 .f una coma; luego sigue el período de las unidades de millon, 1 viendo què se han enunciado 3 centenas, 4 decenas if unidades, las escribo, proniendo á la derecha del 5 un punto; despues sigue el periodo de los millares, i no habiendose enunciado mas de 2 centenas, las escribo; I á su derecha, dos 00 I una coma, en lugar de las deleenas f unidades de dicho período; sigue, por último, el período de las rnitladés simples; 1 viendo que se han enunciadd 8 centenas, 7 decenas i 3 unidades simples, las escribo: resultando asi bien representado el número propuesto por esta combinacion 6:000,345.200,873; porque cada orden de unidades ocupa el lugar que le corresponde.

EJEMPLO ${ }^{\text {N. }}{ }^{6}$.2. Quiero leer el náméra 8:5̈03,008.402,531. Despues de haberlo recorrido, comenzando por la derecha, í dividido en períodos de á tres cifras, poniendo una coma al pié del 2 que representa lasimidales de millar; unf

$84-$

punto, al pie def 8 que representa las de millon; una cema al pie del 3 que representa las de millar de millon; \& dos puntos, al pie del 8 que representa las unidades de billon; he venido en conocimiento del orden de unidades i del valor querepresenta esta última cifra, f principiàndo por ella, resultaŕ́ biem enunciado el número propuesto, diciendo: ocho billones, quinientos tres mit ocho millones, cuatrocientas dos mil, quinientas treinta i una unidades simples.

EJEMPLO N.o 3. Un snjeto medebe la cantidad de $9,982 \mathrm{ps}$.; otro, la de 584 ps.; olro, la de 40 ps ; ; otro, la de 3 ps ; í quiero saber la suma de diehas partidas:
escribolas como en el marjen; tiro la raya, f, prineipiando por la primera columna de la derecha, diga: 2 í 4 son 6,10 son $6, f 3$ son 9 unidades, que escribo de- suma. $\quad 10,609 \mathrm{ps}$. bajo, í nada Hevo: paso á
 la siguiente columna, 1 digo:
818 son 16 , 1 I son 20° decenas cabales, quecomponen 2 centenas: escribo un 0, if llevo las dos centenas, que, agregadas á las 9 de la siguiente columna, son 11, i 5 son 16 centenas, que componen un millar i 6 centenas; escribo las 6 centenas, íllevo 1 millar, que, agregado á $\operatorname{los} 9$ de la siguiente íúltima columna, son 10 millares caDales, que cgmponen 1 decena de millar; escribo uñ 0, i llevo 1 decena de millar, que escribo á la izefuierda del 0; resultando asi debajo de Ja raya la sama $\mathbf{1 0 , 6 0 9}$ pesos, que busco. Asi, tengo que $9982+8884+40+3=10609$.

EJEMPLO N° 4. A un comerciante le debo Ia eantidad de $87,650 \mathrm{ps}$; ; le he dado á cuenta Be ella $6,450 \mathrm{ps}$., í quiero saber qué cantidad detesto: escribo la cantidad menor debajo de ta
mayor, como en el marjen:
tiro la raya, A, princípian- minaendo. . $87,650 \mathrm{ps}$. do por la primera columna sustraendo. $6,450 \mathrm{ps}$. de la derecha, digo: de 0 anidades á θ, va θ, que es- BESTA. . . . 81, 200 ps. críbo debajo í na da llevo: paso à la siguiente, í di-
go: de 5 decenas á 5 , nada; escribo un 0 f nada Jlevo: paso á la siguiente, f digo: de 4 centenas á 6, van 2, que escribo í nada Hevo; paso á la siguiente, f digo: de 6 millares á 7, va 1, que es cribo í nada llevó; paso á la úkima, i digo; de nada á 8 decenas de millar, van 8, que escribo; resultando asi debajo de la raya la resta 81,200 pesns, que busco. Asi, tengo que $87650-6400=$ 81200.

EJEMPLO N.o ö. Tenge ä0, 6 'f yrds. de tocnyo; he vemdido 4,350 yrds., íquierosaber las que me quedan: escribo las cantidades come ell el marjen; tiro la raya, i, princi- 50,646 yrds. piando por la primera coluna de 4,300 yrds. la derecha, digo: de 0 unidades á 6, van 6, que escrilm f inadd llever 46,296 yrds. pasoá la siguiente, i, viendo querel 3 del sustraendoes may oryne el 4 de! minuendo, agrego á este, mentalmente, diez unidades, if de la suma 14 hage ta resta, diciendo: de 5 decenas a 14, van 9 , que escrib, illevo 1, que, agregada al 3 del sustraendo son 4, 1 diga: de 4 centenas á 6, van 2, que escribo í nada llevo: paso á la siguiente, f, viendo que el 4 del sustraendo es mayor que el 0 del minuendo, le agrego á este, mentalmente, diez unidades, 1 resto, diciendo: de 4 millares á 10, van 6, que escribo a Heva 1, que restado de las 5 decenas de millar del miauendō, van 4, que escribo; resultando asi debajo de la raya la resta 46,296 yrds., que busco. Asi, tengo que $50646-4350=46296$.

EJEMPLO N. 6. Quiero tomar 6 hacer

 Veces mayor al número 80,652 . Escribo el número dijito debajo del compuesto, como sigue:$\left.\begin{array}{l}\text { mLLTIPLicando. } 80,6022 \\ \text { muLtiplicador. }\end{array}\right\}$ factores del producto
producto. . . 322,608

Tira la raya, 1 principiando por la derecha, digo: 4 por 2 son 8 unidades, que escribo debajo 1 nana llevo: 4 por 5 son 20 decenas cabales, quecomponen dos centenas; escribo un 0 i llevo las 2 centenas: 4 por 6 son 24 centenas, i 2 que $1 l e-$ vo son 26, que componen 2 millares 16 centenas; escribo las 6 centenas ílleva los 2 millares: 4 por 0 es 0 , i 2 millares que llevo, los escribo: 4 por 8 son 32 decenas de millar, que componen 3 centenas 12 deceuas de millar; escribo las 2 decenas 1 llexo las 3 centenas de id., que escribo á la izquierda del 2 , resultando asi debajo de la faya el producto 322,608 , que busco, cuyo número es cuatro, veces mayor que el propuesto. Asi, tengo que $806002 \times 4=322608$.

Al ejecutar las operaciones parciales del sumar, restar i multiplicar, no se necesita, repetir, si son unidades, decenas, fentenas, etc., como en los ejemplos anteriores; sino que se considerarán como si fuesen unidades simples; esta prácticar es, para los principiantes, que el Maestro la allananá asi que se familiaricen con el orden de las unidades.

EJEMPLO N. ${ }^{9}$ 7. Quieno saber el valar de $\frac{1}{2}, 204$ relojes, a razon de 123 ps . cada uno. $T q=$ mando este último número por multiplicador, par ienér merios guárismos, la escribo debaja del atro como sigue:

$-87-$

$\left.\begin{array}{lrr}\text { MHLTIPLICANDO. } & 1201 \\ \text { MULTIPLICADOR. } & 123\end{array}\right\}$ FACTORES DELL PRODUCIG.

paoducto total. . 148092 ps.
Tiro la raya: luego multiplico cada cifra del multiplicando por las 3 unidades del multiplicador, í coloco su producto deliajo de la raya, I su primera cifra 2 debajo de dicho 3; en sequida, por las 2 decenas, 1 coloco su producto debajo del anterior, í su primera cifra 8 debajo de dieho 2 ; despues por la 1 centena, $\{$ coloco su producto debajo del anterior, 1 su primera cifra 4, debajo de dicho 1 ; tiro otra raya, sumo estos proluctos parciales, i resulta el producto total $148 ; 092$ pesoc, el cuial expresa el valor de los relojes, que busco. Asi, lengo que $1204 \times 123=1 / 8092$.

EJEMPLO N.o 8. Para el primer caso. Con el peso de 100 onzas de hierro se ha hecho utu azadon if se queere saber cuantas onzas se necesitall para hacer 1,000 azadones. Tendre que multiplicar el número de onzas que pesa e! azadon, que es 100, por el de los azadones, que es 1,000 : escribo los factores como en el marjen; tiro la raya, \{ para abreviar $1000 \ldots .$. azds. la operacion, pongo á la derecha 100.000 onzs. del multiplicando, 100, que por comodidad se ha puesto debajo, los tres ceros que acompañan á la unidad del multiplicador, i resulta el producto total 100,000 onzas, que son las que se necesitan para hacer dichos azadones. Asi, tengo que $1000 \times 100=100000$. Para el serundo case, Ea la superficie de una
vara cuadrada entran 18 ladrillos angostos, $\{$ quiero saber los qque entran en 100 varas cuadradas que mide una habitacion. Tendre que multiplicar el número de los ladrillos que entran en una vara, que es 18, por el de las varas, que es 100: escribo los factores como en el marjen; tiro la raya, i para abreviar la ope- $100 \ldots . .$. vrs. racion, pongo á derecha del multi- $\mathbf{1 8 . 0 0}$ ldlls. plicador los dos ceros que acompaǹan á la unidad del multiplicando, í resulta el producto total 1,800 ladrillos, que son los que entran en dichas varas. Asi, tengo que $100 \times 18=1800$.

EJEMPLO N.o 9. Quiero reducir $300 \mathrm{ho-}$ ras á minutos. Tendre que multiplicar dicho número por 60 minutos que componen una hora: escribo los factores como en el mar-
jen; tiro la raya, 1 para abreviar la operacion, multiplico el 3 del multiplicando por el 6 del multiplicador 1 tengo el producto 18 ; añado á es-

300 hrs .
60 mnts.
18000 mnts . te los tres ceros que hai en ambos factores, i resulta el producto total 18,000 minutos, que son los que componen dichas horas. Asi, tengo que $300 \times 60=18000$. EJEMPLO N. ${ }^{\circ}$ 10. Quiero reducir 2,123 fardos de tocuyo á yardas. Tendre que multiplicar este número por 403 yardas que supongo tenga cada fardo: escribo los factores 1 tiro la raya, como en el marjen; luego multiplico todo el multiplicando por el 3 del multiplicador, ícoloco su producto debajo de la raya, í su primera cifra, 5 , debajo de dicho 3: prescindiendo del cero, para abreviar la operacion, paso á multiplicar por el 4, 1 coloco su producto debajo del anterior, 1 su primera

2125 frds.
403 yrds.

6375 8500

856375 y rds.
cifra, 0 , de-
bajo de dicho 4; tiro otra raya, sumo estos productos parciales, í resulta el producto total 856,375 yardas, que son las que componen dichos fardos. Asi, tengo que $2125 \times 403=8036375$.

EJEMPLO N. 11. Se ha hecho una pared de 5 pies de elevacion íse la quiere elevar 4 veces mas. Maltiplicaudo el número propuesto, 5 , por el 4, resulta el producto 20 pies, que es la altura á que debe elevarse la pared. Asi, tengo que $5 \times 4=20$. Véase ademas el ejemp. $n .^{\circ} 6$.

EJEMPLO N.o 12. Sabiendo que una vara de piqué vale 3 reales, quiero saber el valor de 225 varas: multiplico el 3 por 225 , i resulta el producto 675 reales, que es el valor de dichas varas. Asi, tengo que $223 \times 3=675$. Véanse ademas los ejemps, ns. 7 i 8.

EJEMPLO N. ${ }^{\text {13 }}$. Quiero reducir 150 pesos á reales. Multiplico este número por 8 reales que componen un peso. í resulta el producto 1,200 reales, que son los que componen dichos pesos. Así, tengo que $130 \times 8=1,200$. Véanse ademas lus ejemps. us. 9 i 10.
E.JEMPLO N. ${ }^{\circ}$ 14. Quiero saber las veces que el número 2,764 contiene al 8. Tomo pues por dividendo, el primero, por ser el número que debe contener; í por divisor, el segundo, por ser el que debe estar contenido: escribo ambos términos, í tiro las rayas, comu aqui se ve:

> DIVIDENDO...227,6,4, \mid 8..........divisor. $345+\frac{4}{8}$ cocientr.

Luego separo con la coma, de la izquierda del dividendo, dos guarismos, perque el primero no contiene al divisor, 1 'veo cuántas veces contiene 27 al 8 , 1 resulta que tres veces; pongo 3 por cociente, deajo de la raya del diyisor; lo multi-

-90

plico por el 8 í tengo el producto 21 , que resto de 27, diciendo: de 24 á 27 , van 3 , que escribo debajo del 7, íllevo 2, que resto del 2 de arriba, diciendo: de 2 á 2, nada; escribo un 0 debajo del 2: del residno 3 i del 6 que separo con la coma del dividendo principal, formo otro dividendo parcial, 36 ; veo cuántas veces contiene al 8 , í resulta que 4 veces; pongo 4 por cociente á la derecha del 3 ; lo multiplico por el 8 i tengo el producto 32 , que resto de 36 , diciendo: de 32 á 36 , van 4, que escribo debajo del 6, i hevo 3 que resto del 3 , diciendo: de 3 á 3 , nada; escribo un 0 debajo del 3: del residuo 4 ídel 4 gue separo del dividendo principal, formo otro dividendo parcial, 44; veo cuántas veces contiene al 8 i resulta que 5 veces; ponso ä por cociente á la derecha del A, lo multiplico por el 8 í tergo el producto 40 , que resto det 44, diciendo: de 40 á 44 , van 4; que escribo debajo del 4 de arriba, illevo 4 que resto del 4 de abajo, diciendo: de 4 á 4, nada; escribo un 0 debajo de dicho 4; f, como no hai mas guarismos que tomar, indico la division del residuo 4, poniendeto á la derecha del cuciente sobre una rasa í el divisor 8 dobajo, para completar dicho cociente; cuyo quebrado, que se lee cuatro octavos, indica eque, considerando dividida cada una de las unidades del residuo en 8 partes iguales, se han tomado de aquellas cuatro octavas partes. De cste modo, el cóciente se compone de dos partes; la una, de 345 unidades enteras; í la otra, de $\frac{4}{8}$ partes de cada unidad divida, el cual expresa las veces que el número 2,764 contiene al 8 . Asi, tengo que 2764: $8=345+\frac{4}{s}$
EFDMES EJEMPLO 13. Quiero repartir 7,908
pesos entre 20 pérsonas if saber a cómo les toced Escribo ambos términos f tito las rayas, como en el mar- $79,0,8$, jent: luego separo con la coma, 0104 de la izquierda del dividendo, 10 dos guarismos, í parto el pri-

26.

$305+4$
-26 mero de estos per el primero de la izquierda del divisor, diciendo: 7 entre 2 , les toca á 3 , que ponge por cociente; lo multiplico primero por et 6 tet divisor, 1 tengo el producto 18, que resto del 9 que separé con la coma, diciendo: de 18 á 19, va 1 lağregando al 9 una decena;; escribo el 1 debajo del 9 íllevo 1: luego por el 2 , f tenge el producto 6, i 1 que Hlevo son 7, que resto del 7, diciendo: de 7 á 7, nada; escribo un 0 debajo del 7: del residuo 1 í del 0 que separo del dividemio principal, fuemo otro dividendo parcial, 10; i viendo que no contiene al divisor, pergo 0 por cociente. I bajo el 0 del dividendo principal al lado del 1: del residuo 10 í del 8 que separo, formo otro dixidendo parcial, 108, i digo: 10 entre 2 , les toca á 4, que pongo por cociente; lo multiplico primero por el 6 del divisor, í tengo el producto 24 , que resto del 8, diciendo: de 24 á 28 , van 4 (agrogando al 8 dos decenas); escribo el 4 debajo del \& i livo 2; luego por el 2, í tengo el producto 8, 12 gie llevo son 10, que resto del 10. diciendo: de $\boldsymbol{0} 0$ á 10, nada; escribo un 0 delajo del 0 i llevo 4 , que resto del 1, diciendo: de 1 á 1, nadá es ribo un 0 debajo del 1; thabiendose concluido el dividendo principal, escribo el residuo 4 á la derochá del cociente sobre una raya í el divisor 26 debajo; resultando asi el cociente total 304 pesas, i cuatro vein tiseisavos de un peso. que busco, el cual manifesta lo que toca á cada persona. Asi, tengo que $7908, \dot{2} \cdot \mathrm{a}=304+\frac{4}{26} 4$.

EJEMPLO N. ${ }^{\circ}$ 16. Quiero repartir 3 arro-

 bas de café entre 4 personas. Escribo ambos términos í tiro las rayas, como en el marjen; í viendo que no se puede ejecutar la division, porque el dividendo no contiene al divisor, la in-dico, poniendo al cociente el dividendo $\left.3\right|^{4}$ 3 sobre una raya í el divisor 4 debajo, cuyo quebrado, que se lee ties cuartos, se considerará como el cociente que se busca, el cual manifiesta que rio toca á cada persona una arroba entera, sino 3 partes de las 1 en que se considera dividida cada arroba. Asi, tengo que $3: 1=\frac{3}{4}$.

EJEMPLO N.o 17. Para el primer caso. Se quiere divider 10,000 hombres de tropa en 100 partes iguales, para atender con ellas á otros tantos objetos diferentes. Escribo ambos términos, i para abreviar ta division, vien- 10000100 do que acompanan al 1 del divisor dos ceros, borro otros tantos de la derecha del dividendo i queda por por cociente 109, que es el númeso de hombres que corresponden á cada una las cien partes iguales en que se ha dividido el número propuesto.Asi, tengo que $1000: 100=100$.

Para el segundo caso. De 8,534 varas cuadradas de terreno quiero tomar la centésima parte. Tendre que dividir dicho núnero por 100; escribo ambos términos, i para abreviar la operacion, viendo que al 1 del $85 / 25 \mid 100$ divisor acompañan dos ceros, corto dos guarismos de la derecha del dividendo, 1 queda por cociente 8 ä varas i el residuo veinticinco cienavos de otra, que es la centésima parte del número propuesto, que busco. Asi, tengo que $8525: 100=805+\frac{25}{100}$.

EJEMPLO N. ${ }^{\circ}$ 18. Con 3,000 pesos se han comprado 600 arrobas de azucar ise quiere saber á cómo sale la arroba. Tomo por dividendo los 3,000 pesos, f por divisor, las 600 arrobas; escribo ambos términos, 1 viendo que el divisor tiene menos ceros, borro los dos de este f otros dos del dividendo, í divido 30 por 6, que es lo que queda en ambos términos íresulta por cociente 5 pesos, que es el valor de la arroba, que busco. Asi, tengo que $3000: 600=5$. EJEMPLO N.o 19. Un individuo tiene la cantidad de 315 pesos; se propone gastar 35 pesos al mes, í desea saber cuántos meses podrá subsistir con aquella cantidad; es deeir, que se busca las veces que 33 está contenido en 315. Dívidiendo este número por el otro, resulta al cociente 9 meses, que son los que podrá subsistir con la cantidad propuesta. Asi, tengo que $315: 303=9$. Véast ademas el ejemp. n. ${ }^{\circ} 14$.

EJEMPLO N. ${ }^{\circ}$ 20. Un padre de familia tiene un terreno que mide 2,120 fanegas cuadradas; quiere repartirlo entre sus 8 hijos í saber cuántas fanegas corresponden á cada uno. Dividiendo el número de las fanegas por el de los hijos, resultan al cociente 265 fanegas, que son las que corresponden á cada hijo. Asi, tengo que $2120: 8=265$. Véanse ademas los ejemps. ns. 13.16.

EJEMPLO N.o 21. A un sujeto le he ofrecido la quinta parte de utilidad en un negocio que le he confiado, en el cual se han ganado 525 pesos, í deseo saber lo que le corresponde. Dividiendo este número por 5, que es la parte que se ha de tomar, resulta al cociente 103 pesos, que es la quinta parte que le corresponde. Asi, tengo que $525: 5=105$. Véanse ademas los ejemps. ns. 17 í el que le sigue.

$-94-$

EJEMPLO N.o.22. Con 80 reales he eomiz prado una pieza de imperial que tiene 40 yardas, 1 quiero saber á cómo me sale la yarda. Dividienda 80 , valor de las yardas, por 40 , número de ellas, resulta al cociente 2 reales, que es el valor de la yarda. Asi, tengo que $80: 40=2$. Véase ademas el ejemp. n.० 18.

EJEMPLO N. ${ }^{\circ}$ 23. Con 7 pesos he comprado una arroba de pepita, í quiero sabier el núdmero de arrobas que puedo comprar con 1,240 pesus. Dividiendo este número, que es el valor dado, per 7, valor de la arroba, resulta el cociente 177 arrobas í un sétimo de otra, que son las que puedo comprar con la cantidad propuesta. Asi, tengo que $1240: 7=177+\frac{1}{7}$,

EJEMPLO N. ${ }^{\circ}$ 24: Qaiero teducir 4,323 reales á, pesos. Divídiendo el número propuesto por 8 reales que componen an peso, resulta el cociente 540 pesos (cinco octavos de otro, que son los que componen dichos reales. Asi, tengo que $4320: 8=540+\frac{5}{8}$

EJEMPLO N.o 25. Si se multiplica por 2 el numerador del quebrado $2 / 8$, resulta $4 / 8$, que es dos veces mayor que el quebrado propuesto; is se divide por el mismo 2 , se tiene $1 / 8$, que es dos veces menor tue $2 / 8$ ($\mathbf{1 2 5}$).

EJEMPLO N.o 26. Si se multiplica por 3 el denominador del quebrado $3 / 12$, resulta $3 / 36_{\text {, }}$ que es tres vecrs menor que el quebrado propuesto; 1 si se divide por el mismo 3 , se tiene $3 l_{4}$, que es tres veces mayor que $3 / 12$ (125).

EJEMPLO N.o 27. Si se multipliean los dos términos del quebrado $2 / 4$ por 2 , resulta la expresion de igual yalor β_{8}; porque si la multia

-95 -

plicacion del numerador ha hecho el quebrado dos veces mayor de lo que era, la multiplicacion del denominador lo hace menor el mismo número de veces; ísi se dividen por el mismo 2, resulta la expresion equivalente $1 / 2$; porque si la divicion del numerador ha hecho el quebrado dos veces metior de to que era, la division del denominador lo hace mayor el mismo número de veces: luego, en uno como en otro caso, el valor del quebrado propuesto no ha padecido alteracion alguna, sino que sólo ha mudado de expresion.

EJEMPLO N. ${ }^{\circ}$ 28. Quie-
ro reducir á un comun de- A. B. C. nominador los quebrados que al marjen se escriben en la coJumna A. Multiplicando primero el denominador 2 por el denominador 3 , í el producto 6 por el denominador

$$
2 l_{3}=16 l_{24}=\frac{2 \times 2 \times 4}{2 \times 3 \times 4}
$$ 4, tengo el prodncto 24, que es el comun denominador para todos. Multipli-

$$
{ }^{3} l_{4}=18 l_{24}=\frac{3 \times 3 \times 2}{2 \times 3 \times 4}
$$ cando en segnida el numerador de $1 / 2$ por el denominador 3 , í el producto 3 por el denominador 4 , tengo el producto 12, que es su nuevo numerador, í resulta dicho quebrado convertido en ${ }^{12} / 24$, que escribo á la derecha de $1 / 2$ en la columna B. Multiplicando despues el numerador de $2 /_{3}$ por el denominador 2 i el producto 4 por el denominador 4 , tengo el producto 16, que es su nuevo numerador, í resulta dicho quebrado convertido en $16 / 24$, que escribo á la derecha de ${ }^{2} / 3$. , Multiplicando, últimamente, el numerador de $3 / 4$ por el denominador 3 is el producto 9 por el denominador 2_{3}

tengo el producto 18, que es su nuevo numerados, i resulta dicho quebrado convertido en $\mathbf{1 8} / \mathbf{2 1}$. que escribo á la derecha de $3 /$ a. Asi, tengo que los tres quebrados ${ }^{12} l_{24},{ }^{16} l_{24}{ }^{1} 18 l_{24}$ de la columna B, son iguales á los primitivos í tienen un mismo denominador, que busco; porque los dos términos de cada uno se han multiplicado por un mistno número, como se ve en las indicaciones de la columna \mathbf{C}.

EJEMPLO N. ${ }^{-}$29. EI quebrado $30 /_{60}$ reduzco á $3 / l_{\text {c, }}$, partiendo sus dos términos por 10; porque rematan en cero.

EJEMPLO N. ${ }^{\circ}$ 30. El quebrado $16 l_{32}$ reduzco á $1 / 2$, partiendo son dos términos por 2; porque rematan en números pares.

EJEMPLO N. ${ }^{\circ}$ 31. El quebrado ${ }^{25} l_{100}$ reduzco á $1 / 4$, partiendo sus dos términos por 5 ; porque el uno remata en 5 í el otro en 0 . EJEMPLO N. ${ }^{\circ}$ 32. El quebrado ${ }^{124} / 232$ reduzco á ${ }^{31} /_{58}$, partiendo sus términos por 4; porque las dos primeras cifras de la derecha de cada término representan un número exactamente divisible por 4.

EJEMPLO N.. 33. El quebrado $45 / 24$ reduzeo á $5 / 8$, pariiendo sus términos por 3 ; porque las cifras 1 \& 5 del numerador, i las 2 i4 del denominador, dan por suma $6 ; i$ el quebrado ${ }^{36} /_{72}$ reduzeo á $4 /_{8}$, partiendo sus têrminos por 9 ; porque las cifras $3<6$ del numerador, í las 7 í 2 del denominador, suman 9 .

EJEMPLO N. ${ }^{\circ}$ 34. El quebrado ${ }^{24} l_{84}$ reduzco á ${ }^{12}$ l/42 partiendo sus términos por $2 .^{2}$

$97-$

Dividiendo tambien por 2 los términos de este último quebrado, to reduzco á $6 / 21$. Aunque esta expresion es mucho mas sencilla que la propuesta, todavia no es la mas sencilla de todas, porq te aun se pueden dividir por 3 sus dos términos, í ejecutando esta di - vision, resulta $2 / 7$, que es enteramente irreducible, por no tener ya divisor comun.

EJEMPLO N. ${ }^{\circ} 33$. Qaiero reducir á enteros el quebrado impropio $20 / 8$ varas. Dividiendo el numerador 20 por el denominador 8 , resulta el cociente 2 i $1 / 8$ varas, que busco.

EJEMPLO N. ${ }^{\circ} 36$. Quiero reducir el entero, 6 pesos, á un quebrado impropio cuyo denominador sea 4. Maltiplicando el 6 por el 4 , tengo el pro-ducto 24, que pongo por numeradör, i por denominador, el 4 dado; resultando así el quebrado impropió ${ }^{24} l_{4}$ pesos, que busco.

EJEMPLO N. ${ }^{\circ} 37$. Quiero reducir el número mixto, 7 f $1 / 2$ arrobas, á quebrado impropio. Multiplicando el 7 por el denominador 2, tengo el producto 14; agregando á este el numerador 1, tengo la suma 15 , que pango por numerador, ípor deniomib nador, el mismo 2; resultando asi el quebrado impropio $15 / 2$ arrobas, que búsco.

EJEMPLO N. $\% 38$. Quiero valuar 6 hap Hlar el valor del quebrado $2 / \mathrm{s}$ de vara, em unidadest de especie inferior á la vara. Escribo los términos del quebrado í practico la operacion como se ve ca vuelta.

Luego maltiplico el numerador 2, por 4 cuartas que componien una vara, í tengo el producto 8, que, dividido por el denominador 5, resulta al cociente 1 cuarta i el residuo 3, que, para simplificar la operacion, omito pasarlo al cociente en forma de quebrado, lo que tambien se hará con los residuos siguientes: ahora multiplico dicho 3 por 9 pulgadas que componen una cuarta, trengo el producto 27 , que, dividido por el mismo denominador 5 , resulta al cociente 5 pulgadas f el residuo 2: multíplicandolo por 12 lineas que componen una pulgada, tengo el producto 24 , que, dividido por el misme denominador $\check{5}$, da al cociente 4 lineas i. el residuo 1. lo multiplico tambien por 12 puntos que componen una línea, 1 tengo el producto 48 , que, dividido por el mismo denominador 5; da al cociente 9 puntos i ell residuo 3 ; ícomo ya no hai unidal de especie inferior, it dicho residno pasa de la mitad del denominador 5, agrego por ello una unidad á la cspecie última que se ha sacado al cociente, que es la de puntos. Asi, ten-1 go que el quebrado propuesto, ${ }^{2} / 3$ de una vara, equixale á 1 cuarta, a pulgadas, a líneas í 10 llar el valor del quebrado ${ }^{3} / 4$ de arroba, relativo al ejemplo n. ${ }^{0} 16$ de la pregunta 103, en unidades de especie inferior á la arroba. Planteada la operacion como en el caso anterior, multiplico el numerador 3 por 20 libras que componen una arroba, I tengo el producto 75, que, dividido por el denominador 4, da al cociente 18 libras i el residuo 3: Io multiplico por 16 onzas que componen una libra, 1 tengo el producto 48, que, dividido por el mismo denominador 4, da al cociente 12 onzas cabales. Asi, tengo que el quebrado, ${ }^{3} / 4$ de árroba, equivale á 18 libras if 12 onzas, que busco. EJEMPLO N: ${ }^{\circ}$ 40. Quiero sumar los quebrados que al márjen se escriben; i, viendo que tienen iguales denominadores, sumo los numeradores, Í a la suma 6, pongo por denorninador, el comun 8: resulta por suma el quebrado propio $6 / 8$, que escribo; simplificado este quebra- suma. $6 / 8=3 l_{A}$. do por reférirse á unidades abstractas, se reduce á $3 l_{4}$. Asi, tengo que $1 l_{8}+$ $2 / 8+{ }^{3} / 8=6 /_{8}=3 / 4$.

EJEMPLO N. $\mathrm{a}^{\text {4t. Tomando razon dé }}$ varios retazos de raso se ha encontrado, uno de $2 / 3$ de vara, otro, de $3 / 4$ f otro, de $1 / 2$ vara, ise desea saber la suma de ellos. Planteo la operacion com sigue:

$$
\left.\begin{array}{r}
2 l_{3}=16 l_{24} \\
+\quad 3 l_{4}=18 l_{24} \\
+\quad 1 l_{2}=12 l_{24}
\end{array}\right\} \text { de vara. }
$$

sumi. $1 \quad \mathrm{yr}+22 / 24$ de $\mathrm{pr}=3 \mathrm{cr}+6 \mathrm{p} / 4$,

Luego, viendo que tienen denominadores distintos, los reduzè a úncoman dénominador, ise convierten en $16 t_{21}, 18 / 2$, is $12 / 24$; luego sumo los numeradores de estós quebrados, í á la suma 46 pongo por denominader, el comun 24: resulta el quebrado impropio $46 / 2$ y varas, que, reducido á enteros, resulta 1 vara $1^{2} / 2$ de vara; escribo este quebrado debaje de los otros í llevo 1 vara que pongo á la izquierda: valuado el quebrado $22 / 24$ de vara, por referirse á unidades del sistema legal de medidas, resulfan 3 cnartas if 6 pulgadas; nibteniendo asif en último resultado la suma 1 vara, 3 cuartas if 6 pulgadas, que busco.

EJEMPLO N. 42. Tratando de comprar cuatro piezas de paǹo re-
sulta cada una con el númern de varas que'al márjen se escriben, i quiero sätier la suma de ellas: viendu que los quebrados tienen uit mismo denominador, sumo los. mumeradores, i á la su-

$$
\left.\begin{array}{l}
\left.\begin{array}{r}
40+3 / 4 \\
+41+2 / 4
\end{array}\right\} \text { vrs. } \\
+43+1 / 4 \\
+42+3 / 4
\end{array}\right\}
$$

suma. $168 \mathrm{vr} .+1 / 4$ de vrs: ma 9 . pongo por denominador, el comun 4: resulta el quebrado impropio $9 / 4$ varas, que, reducido á enteros, resultan 2 varas i $^{1} / 4$ de vara; escribo este quebrado debajo de los otros, $\{$ llevo 2 varas que agrego á las unidades de los enteros al practicar Ja suma de ellas; obteniendo asi en último resultado la suma 168 varas $1 / 4$ de vara, que husco: no se valua este quebrado por conocerse á primera vista su valor.

EJEMPLO N. ${ }^{\circ} 43$. De $24 / 32$ quiero restar ${ }^{14} / /_{32}$. Planteo la operacion como en el márjen; f, viendo que tienen iguales denominadores,
resto los numeradores, í á
Ja resta 10 , pongo por denominador, el comun 32: resulta por resta el quebrado propo ${ }^{10} l_{32}$. que, simplificado, por Resta, ${ }^{10} / 32={ }^{5} / 16$ referirse á unidades abstrectas, se reduce á ${ }^{s} / 16$. Asi, tengo que $24 / 32-$ $14 / 32=10 / 32=3 / 16$

EJEMPLO N. ${ }^{\circ}$ 44. De $?$ il $\frac{1}{2}$ arrobas de azucar que tenia be gastado 3 i $3 / 4$ arrobas, í quiero saber cuanto me queda. Manteo la operacion como sigue:

$$
\left.\begin{array}{r}
9+1 l_{2}=4 / 8 \\
-3+3 / 4=6 / 8
\end{array}\right\} \text { arrobas. }
$$

Resta. $3 \mathrm{ar}+6 / 8 \mathrm{de} \mathrm{ar}+18 \mathrm{~b}+12 \mathrm{on}$.
Lutgo reduzeo los quebrados á un comun denominador, porque no to tiemen, ise cmivierten en ${ }^{4} / 8$ i $6 / 8$: al hacer la resta de estos quelrados observo que $6 / 8$ no se puede restar $d e / 4 / 8$, í agrego por ello, mentalmente, al numerador 4 , utia unidad reducida á la denominacion 8 del quebrado, í de la suma 12 resto 6 if van 6 , a cuya resta pongo por denominadot, el gomun 8: resulta el quebrado propio $6 / 8$ de arroba, que escribo dehajo de los quebrados, íllevo 1 arroba, que, agregada á las 5 de los enteros, son 6, que resto de 9 f van 3 , que escribo: valuado el quebrado $6 / 8$ de arroba, por relerirse á unidades del sistema legal de medidas, resaltan 18 libras i 12 onzas; obteniendo asi en údtimo resultado la resta 3 arrobas, 18 libras i 12 onzas, que bùsco. EJEMPLO N. ${ }^{\circ}$ 45. De 8 pesos quierures-

Lar 6/ 16 de peso. Planteo la operacion como en el márjen; 1, no habiendo quebrado á la derecha de los enteros, suplo mentalmente, una unidad reducida á $16 / 16$.

$$
\begin{aligned}
& \mathrm{ps} . \\
& \mathrm{e} p \mathrm{~S} .
\end{aligned}
$$

Rta.ps. $+10 l_{16} \mathrm{deps}=5 \mathrm{rs}$. que es la denominacion del quebrado $6 l_{16}$, el cual resto de aquella fraccion, cuya operacion simplifico restando el numerador 6 de su denominador 16, f van 10, á cuya resta pongo por denominador, el 16 del quebrados resulta el quebrado propio $10 / 16$ de peso, que escribo. f llevo 1 peso que resto del entero 8 , i van 7. que escribo: valyado el quebrado $10 / 16$ de un peso, resultan 5 reales; obteniendo asi en último yesultado la resta 7 pesos i 3 reales, que busco. EJEMPLO N. 9 46. Quiero multiplicar $2 / 3$
por 3/4. Planteo la operacion, como en el márjen: luego multiplico los numeradores, 1 el producto $6, \quad 2 / 3$ pongo por numerador del producto; despues, los denominadores, i el producto 12, jongo por denominador: re- probucro. $6 / 12=1 / 2$: sulta por prodacto el quebrado propio $6 / 12$, que, simplificado, por referirse á unidades abstractas, es $1 / 2$. Asi, tengo que $2 l_{3} \times 3 l_{4}=6 / 12=1 / 2$.

EJEMPLO N. ${ }^{\circ}$ 47. Para el $2 . \circ^{\circ}$ casa. Con. 7 pesos hẹ comprado una vara de paino íquiero saber cuánto importan $2 / 3$ de vara. Trasformando el entero 7 , en el quebrado $7 l_{1}$, 1 dejando el quebrado $2 / 3$, en la forma en que está, planteo la operacion comoeq ye:

- 103 -

1/7 ps.

$\times 2 / 3$ de vr .
Prodt. $14 / 3 \mathrm{ps}=4 \mathrm{ps}+2 / 3$ de $\mathrm{ps}=3+3$ oc. rs .
Luego ejecuto da maltiplicacion, como la de un a quebrado por otro, í resulta por producto el quebrado impropio $1 \frac{4}{4} / 3$ pesos, que, sacando los enteros, se dienen 4 pesos $12 / 3$ de ua peso: valuado este quebrado, por referirse á midades del sistena legal ale medidas, se convierte en 5 \{3 octavos reales, apreximadamente; obteniendose ell último resultado 4 pesos, 3 i 3 vetavos reales, que es el importe ique Busce.

OTRO: Para el 3.0 caso. Quiero comprar 30 i $4 /_{6}$ varas de olan á 6 reales la vara, I sabèr to que importan. Reduciendo el número mixto al quebrodo impropio 181/6, itrasformando el entero ent el quebrado 6/i, planteo da operam cion como se re?

$$
\begin{array}{r}
184 / 6 \mathrm{vrs} . \\
\times \quad 6 / \mathrm{rs} .
\end{array}
$$

> Prodt. $1104 / 6 \mathrm{rs}=184 \mathrm{rs}=23 \mathrm{ps}$.

Iuego ejecuto la multiplicacion, como ta de un Tuebrado por otro, i resulta por producto el quetrado impropio $1104 / 6$ reales, que, sacando los enteros, e tienen 184 reales: reducidos estos á pesos, resultan 23 ; que es el importe que busco.

OTRO. Para el 4. ${ }^{\circ}$ caso. De 11 i1/2 gruesas de tijeras que hai en un almacen quiero tomar las $2 / 3$ partes, í saber á cuánto equivalen; Reduciendo el púmero mixte ald quebrado impro-
pio $23 / 2$, ídejando el quebrado $2 / 3$ como está, planteo la operacion como sigue:

$$
\begin{array}{r}
23 / 2 \mathrm{grs} \\
\times 2 / 3 \mathrm{prts} \\
\hline
\end{array}
$$

$-9 \operatorname{Prodt} .46 / 6 \mathrm{gr}=7 \mathrm{gr}+4 l_{6}$ de $\mathrm{gr}=8 \mathrm{dc}$.
Juego ejecuto la multiplicacion como la de un quebrado por otro, í resulta por producto el que. brado impropio $46 / 6$ gruesas, que, sacando los eriteros 1 valuado el quebrado $4 / 6$ de gruesa, tengo en últime resultado 7 gruesas i 8 docenas; cuyo número equivale á las partes que busco.

OTRO Para el $5 .^{\circ}$ caso. He vendido 10 i $15 / 23$ arrobas de cacao á 8 i $3 / 4$ pesos la arroba, íquiera saber su importe. Reduciendo los dos números mixtos á los quebrados impropios 260% ö §30゙l4. planteo la operacion como se ve:

$$
\begin{array}{r}
263 / 20 \mathrm{ar} \\
\times 3 \mathrm{l}, \mathrm{ps}
\end{array}
$$

Pd. ttl. $927_{3} l_{100} \mathrm{ps}=92 \mathrm{ps}+73 /_{100}$ deps $=6 \mathrm{rs}$.
Luego ejecuto la multiplicacion, como la de un quehrado por otro, í resulta por producto total el yuebrade impropio $927 \mathrm{O} / 100$ pesos, que, sacando los enteros í valuado el quebrado $75 / 100$ de un peso, tenge en último resultado 92 pesos $i 6$ reales, que es el importe que busco.

EJEMPLO N. 48. Quiero dividir 3/4 por
\$/2. Planteo la operacion como sigue, poniendo entre el dividendo al divisor este signo
(:) de la division como se usa en estas cuestiones:

$$
3_{l_{4}}: 1 l_{2}=6 l_{4}=1+2 l_{4}=1 / 2 .
$$

Luego multiplico el numerador 3 del dividendo, por el denominador 2 del divisor, $\{$ el producto 6 , pongo por numerador del cociente; despues mulStiplico el denominador 4 del dividendo, por el numerador 1 del divisor, í el producto 4 , pongo podenominador; resultando asi por cociente el quebrado impropio $6 l_{4}$, que, sacando los enteros, se convierte en $1 \leqslant 2 / 4,61 / 2$, simplificado el quebrado. Asi, tenge que $3 / 4: 1 / 2=6 / 4=1+2 / 4=1 / 2$. FJEMPLO N ${ }^{\circ}$ 49. Pãa el $2 .{ }^{\circ}$ caso. Con 3 pesos he comprado $5 / 8$ de vara de terciopelo 1 quiero saber cuanto importa la vara entera. Tomando por dividendo el entero, 3 pesos, por ser de la especie que busco ell el cociente, lo trasforme; en el quebrado $3 / 4$; ípor divisor, el quebrado $5 / 8$, lo dejo como está, í planteo la operacion como se ve:
$3 / 4 \mathrm{ps}: 5 / 8$ devr $=24 / \mathrm{pss}=4 \mathrm{ps}+4 /_{3}$ de $p s=6+3 \mathrm{oc}$. rs
Luege ejecuto la division, como la de un quebrado pon otro, i resulta por cociente el quebrado impropio $24 / 5$ pesos, que, reducido á enteros se tienen 4 pesos $1^{1} 4 / 5$, de un peso: valuado este quebrado, por referirse á unidades del sistema legal de medidas, resultan 6 i.3 octavos realis, í el quebrado despreciable 1 ly de un octavo; obteniendo asi en último resultado 4 pesos, 6 i 3 octavos reales, que es el importe de la vara entera. Esta cuestion es relativa al caso $6 . .^{\circ}$ de los usos de la division (111).

OTRO. Para el 3°. caso. Sequiere divi-

$-105-$

dir 7 i $1 / 2$ arrobas de tabaco entre 8 personas i saber cuánto corresponde á cada una. Tomando por dividendo el número mixto, lo reduzco al quebrado impropio $15 / 2$; i por divisor, el entero, to trasformo en el quebrado $8 / \mathrm{h}$, í planteo la operacion como sigue:

$$
15 l_{2} \text { ar }: 8 l_{1} \mathrm{pr}=15 l_{16} \mathrm{de} \mathrm{ar}=23 \mathrm{lb}+7 \mathrm{on} .
$$

Luego ejecato la division, como la de un quebrado por otro, 1 resulta por cociente el quebrado propio $15 / 16$ de arroba, que, valuado, se convierte en 23 libras í 7 onzas; que es lo que corres. ponde á cada persona.

OTRO. Para el $4 .^{\circ}$ caso. Con $7 / 8$ de peso he comprado 3 i $1 / 2$ libras de hierro íyuiero saber á cómo vale la libra. Tomando por dividendo, el quebrado, por ser de la especie que busco en el cociente, to dejo como esta; fi por divisor, el número mixto, lo reduzco al guebrado impropio $7 / 2$, i planteo la operacion como se ve:

$$
7 / 8 \text { de } \mathrm{ps}: 7 / 2 \mathrm{lb}=14 / \mathrm{l} 6 \mathrm{de} \mathrm{ps}=2 \mathrm{rs} \text {, }
$$

Luego ejecuto la division, como la de un quebrado por otro, i resulta por cociente el quebrado propio 14/536 de peso, que, valuado, se convierte en 2 reales; que es el valor de la libra, que buseo. QTRO. Para el $5 .^{\circ}$ caso, Con 3 if $3 / 4$ varas de tocuyo se ha hecho una camisa íse quiere saber cuántas camisas se haran con 52 it $1 / 2$ varas. Tomando por dividendo este número, por ser el que se intenta emplear, i por divisor, el otro, los reduzco á los quebrados impropios $105 / 2$ i $15 / 4$, I planteo la operacion como sigue:

- 107 -
 $105 /_{2} \mathrm{rr}: 15 l_{4} \mathrm{rr}=420 / 30 \mathrm{~cm}=14 \mathrm{~cm}$.

Luego ejecuto la division, como la de un quebra-d do por otro, i resulta por cociente el quebrado impropio $420 l_{30}$ camisas, que, reducido á enteros, se tienen 14 camisas; que son las que se haran con el número de varas dado.

EJEMPLO N. ${ }^{\circ}$ 50. De 5.3 libras de vino que contiene una botija se quiere tomar 6 comprar das $3 / 4$ partes, í saber á cuánto equivalen. Tomando por divideado el entero, lo reduzco al guebrado impropio 3 / 1 ; 1 por divisor, el quebrado, inyjerto sus términos trasiormándolo en $4 / 3$, i planteo la operacion como se ve: $5 \ddot{\partial} / 1 \mathrm{lb}: 4 / 3 \mathrm{pr}=16 \ddot{3} / 4 \mathrm{lb}=44 \mathrm{lb}+1 / 4$ de $\mathrm{lb}=4 \mathrm{on}$.
Luego ejecuto la division, come la de un quebrado por otro. 1 resulta por cociente el quebrado impropio $1630 / 4$ libras, sue, sacaudo los enteros if valuado el quehrado $1 / 4$ de libra, resultan $\$ 1$ libras $\{4$ onzas de yino; cuyo peṣo equivale á las partes que se buscan.

EJEMPLO N.o 51. Quiero fomar la mitad

 de las dos terceras partes de media vara de tela, f saber á cuanto equivale, Planteo la operacion como sigue:$$
\left.\begin{array}{l}
1 / 2 \\
\text { de } 2 / 3 \\
\text { de } 1 / 2
\end{array}\right\} \text { vara. }
$$

Prodt. $2 / 12$ de $\mathrm{vr}=6 \mathrm{pl}$.

Iuego multiplico entre sí los numeradores de los tres quebrados, $\{$ el producto 2 pongo por nume. fador del quebrado: multiplico despues los denoz
minadores. i el producto 12 , pongo por denominador; resultando asi dichos quebrados reducidos á solo este, $2 / 12$, que se refiere á la vara, el cual, valuado, se convierte en 6 pulgadas; cuyo número equivale á la parte que busco.

EJEMIPLO N. ${ }^{\circ} 52$. Quiero escribir el número denominado cuatro arrobas, ocho libras, seis onzas, cuatro adarmes i diez granos. Principiando por las arrobas, lo escribire así:

4 arrbs +8 lbrs +6 ons +4 adrs +10 grns.
EJEMPLO N.․ 33. Quiero reducir el número denominado 3 varas, 3 cuartas, 6 pulgadas 1 4 líneas, á su menor especie, que es la de dineas. Tendré que reducir primero las 5 varas á cuartas, que es la especie inmediata inferior; i asi, multiplicando las 5 varas por 4 cuartas que componen una vara, tengo el producto 20 cuar. tas, i añadiendo á estas, las 3 que hai. son 23 cuartas: multiplicando en seguida esta suma por 9 pulgadas que componen una cuarta, tengo el producto 207 pulgadas, i agregando á estas, las 6 que hai, son 213 pulgadas; multiplicando esta suma por 12 líneas que componen una pulgada, tengo el producto 2530 líneas, i anadiendo a estas, las 4 que hai, son 2560 líneas. Asi, tenyo que el número propuesto se ha reducido á 2300 fineas, que busco.

EJEMPLO N. ${ }^{\circ}$ 34. Quiero redacir 6750 adarmes, á unidades de especie superior. Tendré que reducir primero dicho número á onzas, que es la especie inmediata superior; fiasi, dividiendolo por 16 adarmes que componen una onza, resulta al cociente 422 onzas i el residuo 4 adarmes: dividiendo las 422 onzas por 16 onzas que componen una libra, resulta al cociente $26 \mathrm{li}-$ bras 1 el residuo 6 onzas: dividiendo las $26 \mathrm{li}-$ bras por 25 libras que componen una arroba, re-

-109

sulta al cociente 1 arroba i el rèsiduo 1 libra. Terminada esta operacion, pongo á la derecha de la arroba, de mayor á menor, los residuos que han quedado de las divisiones hechas; í resulta que el número propuesto se ha reducido á 1 arroba, 1 libra, 6 onzas i 4 adarmes, que busco.

EJEMPLO N. ${ }^{\circ} 55$. Quiero trasformar el número denominado 6 pesos $\overline{\text { a }} 11$ medio reales, en quebrado comun. Reduciéndolo á su menor especie, resultan 10 medios reales, cuyo número pongo por numerador del quebrado; i por denominador, un peso redućído á la misma especie menor, que son 16 medios; resultando asi trasformado el número propuesto en el quebrado comun $103 / 16$, que busco.

EJEMPLO N. ${ }^{\circ}$ 56. Quiero trasformar el quebrado comun, $7 l_{8}$ de vara, en número denöminado. Valuándolo, se trasforma en el rúmero denominado 3 cuartas, 4 pulgadas 16 líneas, que busco.

EJEMPLO N N° 57. He recihido cuatro partidas de añil con el peso que á contimuacion se expresa, 1 desen saber la suma de ellas. Escríbolas unas debajo de otras, como se ve:

Suma. 98 qnts +3 arrb +0 lbrs +15 ons.
Tiro la raya: Juego sumo las onzas, í resultan 15, que escribo debajo de su columna, porque no componen una unidad de la especie inmediata superior; despues sumo las libras, i resultan 50, que componen 2 arrobas cabales; escribo un 0 debajo de las libras íllevo las 2 arrobas, que, agrega-

Was $\{$ las de la sigutente columna, tengo la su.md 7 arrobas, que componen 1 quintal 13 arrobas; escribo las 3 arrobas debajo de su columna 1 llevó 1 quintal, que, agregado á lós de la siguiente columna, tengo la suma 98 quintales' que escribo; resultando así débajo de la raya la suma total 98 quintales, 3 arrobas í 15 libras, que busco. EJEMPLO N.0 58 . De 9 onzas, 6 adar mes $\{8$ granos de oró que ténia una persoina, ha gastado 5 onzas, 9 adarmes $i 5$ granos, i quiere saber coánto le queda. Escribo' el sustraendo debajo dél minuendo, como sigue:

Tiro la raya: luego resto los granos; i restuta la diferencia 3, que eseribo debajo de su colnmna; pàso á restar los adarmes, f, yiendo que el 9 del sustraendo es mayor que el 6 del minuendo, le agrego á este, mentalmente, una onza reducida á 16 adarmes, $\{$ de la suma 22 resto 9 , 1 van 13 , que escribo debajo í llevo 1 onza; agregada esta á las 5 del sustraendo, son 6%, que resto de 9 , I van 3, que es̃cribo; resultando asi debajo de la raya la resta 3 onzas, 13 adarmes 13 granos, que se busca.

OTRO. A cuenta de 8 pesos que mie debia un sujeto me ba dado 6 pesos 3 i medio reales, i quiero saber lo que me resta. Planteo' la operacion como sigue:

$$
\begin{array}{r}
8 \\
-6 \mathrm{ps}+0 \\
\\
\hline
\end{array}
$$

Resta. 1 ps $+4 \mathrm{rs}+1 \mathrm{md}$.
Euego, al restar las unidades de especie infen
sior, veo que no se puede restar 1 medio de don α de no los hai, i suplo, mentalmente, un réal reducido á 2 medios reales, 1 de estos; resto el 1 del sustraendo, í va 1, que escribo, i llevo 1 real; agregado este á los 3 del sustraendo, son 4 reales, que, no puđiéndose restar de donde no los hai, vuelvo á suphir, mentalmente, al minuendo, un peso reducido á 8 reales, í de estos, resto $\operatorname{los} 4$ del sustraendo, 1 van 4, que escribo, í Jlevo 1 peso; agregado este á los 6 del sustraendo, son 7 , que resto de 8 , i va 1 , que escríbo. Asi, tengo la resta 1 peso, 4 í 1 medio reales; que busco. EJEMPLO N.o 59. Quiero vender 6 quintales, 2 arrobas 112 libras de estaño á 18 pesos 6 reales el quintal, f saber lo que importan. Trasformando los dos números denominados en los quebrados comanes $662 / 100$ \& $150 / 8$, planteo la operacion como sigue:

$$
\begin{array}{r}
602 l_{100} \mathrm{qn} . \\
\times \quad 150 / 8 \quad \mathrm{ps} .
\end{array}
$$

Pd. tII. $99300 / 800 \mathrm{ps}=124 \mathrm{ps}+100 / 800$ de ps $=1 \mathrm{rl}$,
Luego ejecuto la multiplicacion, como la de uns quebrado por otro, fresulta por producto total el quebrado impropio $99300 / 800$ pesos, que, sacando los enteros, se tienen 124 pesos í $100 / 800$ de un peso, δ un real, valuado el quebrado; cuyo últímo resultado manifiesta el importe que busco. EJEMPLO N. ${ }^{\circ} 60$. He comprado 200 varas, 2 tercias $\uparrow 8$ pulgadas de damasco á $5 / 8$ de peso la vara í quiero saber lo que importan. Trasformando el número denominado en el quebrado comun $7232 / 36$, í dejando el quebrado $5 / 8$ como está, planteo la operacion como se ve:

$7232 / 36$ vr.

 $\times{ }^{5} / 8$ de ps.

 $\times{ }^{5} / 8$ de ps.}
$\mathrm{Pd} .36160 / 288 \mathrm{ps}=\mathrm{f} 25 \mathrm{ps}+160]_{288} \mathrm{deps}=4+4$ ocirs.
Luego ejecuto la muttiplicacion, como la de un quebrado por otro, f resulta por producto el quebrado impropio 36160 / 288 pesos que, sacando ios enteros í valuado el quebrado $160 / 288$ de un peso, resultan 120 pesos, 4 í 4 octavos reales. apróximadamente; que es el importe que busco. EJEMPLO N. ${ }^{\circ}$ 61. Con 2 pesos, 3 โ 1 medio reales he comprado una arroba de arroz í quiero saber cuánto compraré con 48 pesos 6 reales. Tomando por dividendo este último número, por ser el valor de las arrobas que intento comprar; í por divisor, el otro, trasformo ambos números denominados en los quebrados comunes $390 / 8$ i $39 / 16$, i planteo la operacion como sigue:

$$
390 l_{8} \mathrm{ps}: 39 l_{16} \mathrm{ps}=6240 / 312 \text { ar }=20 \mathrm{ar} .
$$

Luego ejecuto la division, como la de un quebrado por otro, of resulta por cociente el quebrado impropio $6240 / 312$ arrobas, que, sacando los enlteros, se tienen 20 arrobas; que son las que compraré con la cantidad propuesta.

EJEMPLO N.0 62. Se quiere dividir en 12 partes iguales el número denominado 2 marcos, 1 onza 14 adarmes de plata, para hacer con ellas otras tantas cucharas, í saber el peso de que se han de formar. Tomando por dividendo el núméro denominado, 1 por divisor, el entero, los trasformo en los quebrados comunes $276 l_{128} 112 / 1$, i, planteo la operacion como se ve:
$276 / 128^{\mathrm{mr}}: 12 l_{1} \mathrm{pr}=276 l / 536 \mathrm{de} \mathrm{mr}=1$ on +7 ad .

Lnego ejecuto la division como la de un quebrado por utro, í resulta por cociente el quehrado propio $276 /$ 亿̧536 de marco, que valuado, equivale á 1 ouza í 7 adarmes; cuyo peso es una de las dobe partes de que se formard cada cuchara.

OTEO. Vendiénduse la vara de sarga á \& pesos, 1 亿1 medio reales, quiero saher qué partes de la vara puedo comprar coll $7 / 8$ de peso. Tomando por dividendo este quebrado, por ser el valor de las partes que intento comprar, lo dejo en la forma ell que está; ípor divisor, el número denominado, lo trasformo en el quebrado comum $35 / 16$, í planteo la operacion como se ve:

$7 / 8$ de $\mathrm{ps}: 3 \mathrm{~s} / 16 \mathrm{ps}=112 / 280$ de $\mathrm{vr}=14 \mathrm{pl}$.

Luego ejecuto la division como la de un quebrado por ntro, í resuita por cuciente el quelirado propio $112 l-280$ de vara, que valuado, se convierle en 14 pulgadas, despreciando el quebrado ínlime 112/280 de pulgada; cuyo último resultado manifiesta las partes que compraré con el valor dado. EJEMPLO N. 63 . Quicro escribir el númera mixto derimal cuareita á cinco enteros ó pesos á cinco décimas de ur pe:o. Escribo primero los 43 enteros, lungo la coma deemal, íen seguida las 5 décimas; resultando asi bien representado el número piopuesto por esta combinacion 45,5 piesos.

OTRO. Quiero escribir la fraccion decimal -cho décinas, cuatro centésimas íneve milesimas, de rara,ó sean, ochocientas cuarenta inueve uilésimas. Escribo, primero un 0 en lugar de las unidades alisolatas que no sé han enunciado, luego la coma decimal, í en seguida las 849 milésimas; resultairdo asi bien representada la fraccion propecsta poe

- 114 -

esta combinacion 0,819 de vara; porque cada cifra ecupa el lugar que le corresponde.

OTRO. Quiero escribir la fraccion decimal cinco mil doscientos millonésimas de arroba. Escribo primero un 0 en lugar de las unidades absolutas que no se han enunciado fluego la coma decimal, que hato mayor que las otras; i , observando que desde las décimas hasta las millonésimas hai seis ôrdenes de unidades, veo que debo representar la fraccion propuesta con seis cifras, i como solo se han enunciado cuatro, á saber 5200 , de las unidades mas bajas, tendré que escribir despues de la coma decimal dos 00 en lagar de las unidades superiores que no se than enunciado, ien seguda las cifas indicadas; resultando asi bien représentada dicha fraccion por esta combinacion $0,003,200$ de arroba. EJEMPLO N. ${ }^{\circ}$ 64. Quiero leer la fraccion decimal 0,5678906 de libra. Recorriéndola primero desde la coma á la derecha, diciendo: en el primer lugar, décimas; en el segando, centésimas; etc., hallo que la última cifra 6 ocupa el lugar de las diez millonésimas, cuya denominacion apunto; despues la recorro de derecha á izquierda dividiéndola en períodos de á tres cifras, como en los enteros, í hago la coma decimal mas grande que las otras, í queda preparada ási:

0,3̈.678,906 diez millonésimas de libra.

1, principiando por la primera cifra significativa de la izquierda, resultará bien enunciada fa fraccion propuesta, diciendo: cinco millones, seiscientas setenta i ocho mil, novecientas seis diez millonésimas de libxa.

OTRO. Quiero leer el número mixto decimal 3576307,267008 pesos. Recorriendo primero la parte decimal, como en el caso anterior, f luego la parte entera, como en los eateros, qued a

$3.876,507,567,008$ millonésimas pesos.

I, principiando por la primera cifra de la izquier-' da de los enteros, resultará bien enunciado el número propuesto, diciendo: tres millones, ochocientos setenta i seis mil, quinientos siete enteros, ó pesos, quinientas sesenta í siete mil ocho millonésimas de un peso.

EJEMPLO N.o 63. Para la primera propiedad. La fraccion decimal 0,5 de hora,tiene el mismo valor que 0,50 ó que 0,500 de hora; porque no se ha hecho mas que convertir las 5 décimas de la fraccion propuesta en olras expresiones equivalentes de inferior denominacion, á saber: en la segunda expresion, en centésimas, í en la tercera, en milésimas. Por el contrario, la fraccion decimal 0,200 de dia, equivale á 0,20 óá 0,2 de dia; porque no se ha hecho mas que reducir las 200 milésimas de la fraccion propuesta en otras expresiones equivalentes de superior denominacion. Tambien 625 enteros α reales tienen el mismo valor que 625,0 6 que 625,00 reales.

OTRO. Para la segunda. A la fraccion decimal 0,23 de quintal, quiero hacerla diez veces menor. Poniendo un 0 entre la coma íla cifra 2, se tiene 0,020 de quintal, que es la fraccion pedida; pues cada una de sus cifras se halla en un órden inmediatamente inferior al que ocupa en la propuesta.

EJEMPLO N. ${ }^{\circ}$ 66. Para la tercera icuarta. Sea el número decimal 345,876 onzas. Colocando la coma entre el 8 i el 7 , tendré 3458,76 onzas, número diez veces mayor que el propuesto; íponiéndola entre el 3 í el 4 , tendre 3,45876 onzas, que es cien veces menor que el propuesto.

EJEMPLO N.o 67. Quiero reducir á una misma denominacion las fracciones decimales de

- 116 -

vara que al márjen se escuiben en la columna A. I, observando que la primera fiaccion tiene cua

A
B
tre cifras decimales, agre- $0,3.556$ de $\mathbf{v r} .=0,3456$
go á la segunda un cero, $0,213 \quad \approx=0,2130$
dos á la tercera fítres á $0,56 \quad \alpha=0.03600$
la cuarta; resultando asi $0,7 \quad \ll=0,7000$ cada una con cuatro cifras
decimales, como se ve en las nuevas expresiones de \a columna B, í expresando, por consiguiente, partes de una misma denominacion, las suales conservan el mismo valur que las anteriores tenian.

EJEMPLO N.o 68. Quiero saber caál de las tres fracciones decimales de peso, que al márjen se escriben en la columna C , es mayor. ReduC

D
cidas á una misma denomi- 0,730 de $\mathrm{ps} .=0,780$ nacion, se tienen las nue- $0,23 \quad «=0,230$ vas expresiones de la colum- $0,8 \quad 巛=0,800$ na D; de tas cuales, se ve Gue es mayor la última, porgue representa mayor número de milksimas.

EJEMPLO N.o 69. Quiero trasformar el quebrado comun $5 / 8$ de vara, en fraccion decimal. Tomando por dividendo el S, ípor divisor el 8, planteo la operacion como en el márjen: \{, viendo que el dividendo no contienie al divisor, por ser 20 el quebrado propio, pongo $0 \quad 40$ al cociente 1 la coma deci-

5	8
20	0,623
40	

á la derecha del 51 se convierte en 00 dicimas, que, divididas por 8 dan al cociente 6 décimas f por residuo 2 ; agregándole un 0 á su derecha se convierle en 20 centésimas, que, divididas por 8 dam al cociente 2 centésimas í por residuo 4;
le agrego un 0 á su derecha í se convierte ent 40 milésimas, que, divididas por 8 resuita al caciente 3 milésimas; f como ya no queda residuo algnno, tengo que el quebrado propuesto se ha trasformado exactamente en la fraccion decimal 0,623 de vara, que busco.

EJEMHLO N.o 70. El quebrado comun $6 / 14$ de peso, cuyo denominador no es un producto de la multiplicacion sucesiva del $2 \cdot 6$ del S por sí mismos, no se trasformará en fraccion decinial exseta por mas que se prolongue la operacion, pero se puede conseguir un valor anroximado al verdadero; íproponiéndome obtenerio en centésimas, tendre que sacar ell el cociente tres decimales. Al efecto, planteo la operacion como en el márien: luego

1. ejecuto como en el caso 6 anterior, í saco en el co- 60 ciente hasta mitésimas; 1, 40

14
$0,428=0,43$.
viendo que estas pasan de 120
3. las borro if agrego por ${ }^{*} \quad 8$ ello una unidad mas á las
2 centésimas; ohteniendo asi en últime resultado Ia fraccion decimal 0.43 cuyo valor se aproxima al del quebrado propuesto.

> EJEMPLO N.-71. Quiero trasformar la fraccion decimal 0,0084 de arroba, en otra equivaleute bajo la forma comun. Omitiendo el 0 que hai de la coma á la derecha, pongo por numerador la combinacion 54; 1, observando que de la coma á la derecha hai tres cifras, pongo por denominador un 1 ítres 000; quedondo asi Crasformada la fraccion propuesta en esta $54 / 1000$ de arroba. De este modo las fracciones 0,73 í 0,0609 se trasforman en estas $75 / 100$ \{ $609 /_{10000}$. EJEMPLO N.o 72. Quiero trasformar el
youmero mixto decinal 25,064 libres, en oftm
equivalente bajo la forma comun. Suprimiendo la coma decimal, pongo por numerador toda la cantidad 25064; í, observando que de la coma á la derecha hai tres cifras, pongo por denominador un 1 í tres 000; resultando asi trasformado en el quebrado comun impropio $25064 / 1000$ libras.

EJEMPLO N. ${ }^{\circ}$ 73. Quiero trasformar la fraccion decimal comun $18 / 100$ de real, en otra equivalente bajo la forma de enteros. Pongo primero un 0 en lugar de los enteros, íluego la coma decimal; il observando que el numerador is consta de tantas cifras como ceros hai en el denominador, coloco á la derecha de la coma dicho numerador; quedando asi trasformada la fraccion propuesta en esta 0,18 de real. De este modo las expresiones $8 / 100,6 / 4000$ i $304 / 1000$ se trasformarán en estas 0,$08 ; 0,006$ i 0,304 .

EJEMPLO N. ${ }^{6}$ 74. Quiero trasformar la. fraccion decimal comun impropia $3678 / 100$ pesos, en otra equivalente bajo la forma de enteros. I, observardo que en el denominador hai dos ceros, separo con la coma, de la derecha deF numerador, dos cifras; quedando asi representada la fraccion propuesta por esta de enteros í decimales 36,78 pesos.

EJEMPLO N.0 75. Quiero trasformar el número denominado 2 arrobas, 8 libras if onzas, en decimal. Lo reduzco primero al quebrado comun 934/400 arrobas 174), íluego lo trasormo en el número decimal 2,335 arrobas (196), observando para ello las reglas citadas.

EJEMPLO N. 76. Quiero valuar δ haHar el vator de la fraccion decimal 0,3125 de

+119 -

un peso, en unidades de especie inferior al pex so. Planteo la operacion como en el márjen: luego multipli- 0,3123 de ps . co las decimales solas por 8 rea- $\times 8$ les que componen un peso, í tengo el producto 23000 ; sepa- $2,5000 \ldots$ rs rando de la derecha cuatro cifras, con una coma, por otras
tantas que tiene la fraccion pro- $1,0000 \ldots \mathrm{md}$ puesta, quedan á la izquierda
2 reates i 5000 diez milésimas de un real: multiplicando estas decimales por 2 medios reales que componen un real, tengo el producto 1,0000 , del cual separo enatro cifıas i queda á la izguierda 1 medio cabal. Asi tengo que la fraccion propuesta epuivale á 2 i 1 medio reales, que busco. EJEMPLO N.o 77, Quiero sumar las partidas de números decimales í enteros, de la especie arrobas, que á continuacion se escribenen la columar na G.

C
 D

$08(6$ ar. $=, 806$)
$+3,54$ « $=3,540$ ar.
$+18, \quad \quad \quad=18,000$)
Suma. . $22,326 a r=8 \mathrm{lb}+10 \mathrm{on}+6 \mathrm{ad}+14 \mathrm{gr} \alpha$
Luego los reduzco á una misma denominacion, porque no la tienen, i resultan las nuevas expresiones de la columna D, que, sumadas como en los enteros, íseparando de la derecha de la suma 22346 , tres cifras para decimales, por otras tantas que tiene uno cualquiera de los sumandos, resulta por suma verdadera el número mixto 22 enteros 6 arrobas 1346 milésimés de una arroba, que valuadas (204), equivalen á 8 libras, 10 onzas, 6 adarmes í 14 granos, despreciando fa fraecion fufima 400 milésimas de un grano,

EJEMPLO N.o 78. De 60,75 pesos quier x restar 34,25 pesos. Escribo el sastraendo debajo del minuendo, como an el márjen: i, viendo que
tienen una misma denomi- $-31,25\} p s$. macion, ejecuto la operacion como en los enteros, Rt. . $26,50 \mathrm{ps} .=\mathbf{\$}$ rs. (de la derecha de la res-
4a 2630 , separo con la coma, dos cifras para decimales, por otras tamas que tiene uno cualquiera de los númerns propuestos, i tengo por Festa vendadera el número mixto 26 enteros ó pesos 150 centésimas de un peso, ó cuatro reaTes valuada esta fracemon (203).

EJEMDLO N. ${ }^{\circ}$ 79. Quiero vender 17, 37 quintales de barrilla á 8 pesos el fuintal, í saber caánto importan. Planteo í ejecuto la multiplicacion como en los eiteros,
prescindiendo de la coma deci- 17,25 qu. mal, segun se ve en el márien; $\quad \times 8 \mathrm{ps}$. 1 de la derecha del producto 13800, separo con la coma dos Pdt. 138,00 ps. cifras para decimales, por otras
tantas que hai en uno de loz factores, ohtaniendo asi por producto verdadero 133 enteros 6 pesos cabale:; que ex el importe que busco.

ESEMPLO N. 80 . He quiere compras ©,29 de vara de linon á 0,3 de peso, í saber sa imparte. Escribotos fuctores como ell el

$$
0,29 \text { de } \mathbf{r} \mathbf{r}
$$

mirjen, i multiph- $\times 0,3$ de ps. eándolos comn en Ios enturns, resnlta Pd. 0.087 de ps. $=6$ oc. de rl. el prodarion 87. que. Bo teaiend) mas de dos cifras, \mathbf{I} debiendo semasar con la coma tres cifras de sn deresha para de imales, por olras tantas que hai ell ambos. fa to es, suplo á la izquierda de dicho producto
on 0 para poder ejecutar ta operacion, 1 ofry ademas para indicar que no contieme enteros; resultando asi por producto veriladero la rraccion 0.087 de peso, que, valuada (201), equivale á 6 ectaros de real, apróximadamente; que es el importe gue se husca.

GIFMPLO N. 81. Quiero sater el velor de 16,40 arrohas de café à 10 pesos la arroba. Para abreviar la multiplicacion, viendo que el multiplicador 19, tiene un cero, corro la coma decimal un hazap hácia la derecha del número decimal 16,43 colocandola entre el 1 fel 5. f resolta por producto el némern mixtn 162.5 pesos, es derir, 162 enterns 6 peses 1.5 dérimas de un pese, ó 4 reales, valuada esta fraccion; cuyo resultado es el valor que busec.

OTHO. Quicro comprar 236.5 quintales de aguardiente á 100 reales el quinial. í saher lo que importan. Papa abreriap la multiplication, vienda que el multiplicador 100, tiene dos ceros, dubo correr la coma decinal dos ligares hária la derecha del mámero decimal 233,3, i rio teriendo este mas de nona eifri, suplo a su derecha un 0 , para poder ejerntar la oprrarion. resultando así por producto el entero 23650, reales; gue es el importe que busco.

EJEMPIO N.。82. He comprado 0,25 varas de raso por 0.5 de peso 1 quiero saber emánto importa la papa entera. Tomando por dividendo esta ditima fraceion, por ser de la especie que busco en el cociente, i por divisor, la etra, las redazco á ana misma denominacion, a undiendo un 0 al dividendo, para que tenga of nismo número de de imales que el divisor; if surrimierdo los sighoz decimalis, quers redacida la operagion á dividir 50 per 23, la que plan\&o I ejecuto como en los enteros segun se ve
en el márjen, resultando por cociente exacto el entero 2 pesos; que es el importe de la vara entera.

EJEMPLO N. ${ }^{\circ}$ 83. Quiero dividir 431,49 pesos entre 13 personas, i saber a cómo les toca. Reduzco primero ambos términes á una misma denominacion, anadiendo dos 00 al divisor, por otras tantas decimales que tiene el dividendo, \{ suprimiendo los signos decimales, queda Ja operacion reducida á dividir 45149 por 1300 , la que planteo í ejecuto como en los enteros, segun se ve 45149
en el márjen. De esta di- 6149 vision resulta al cociente 34 enteros í el residuo 919 , que 91 9490 en vez de ponerlo á ta derecha del cociente en forma de quebrado comun, continuo la division por decimales. Al efecto, pongo primero la coma decimal á la derecha de los 34 enteros; luego agrego un 0 á la derecha del residuo 949 í se convierte en 9490 décimas, que, divididas por 1300, dan al cociente 7 décimas, \mathfrak{i} por residuo 390 ; agregándole un 0 á su derecha, *e convierte en 3900 centésimas, que, divididas por 1300 , dan al cociente 3 centésimas, sin quedar residuo alguno; resultando asi por cociente completo el número mixto 34 enteros 6 pesos i 73 centésimas de un peso, que es lo que corresponde á cada persona.

EJEMPLO N. ${ }^{\circ}$ 84. Con 73, 5 pesos he

 comprado 1000 docenas de botones íquiero saber cuánto importa la docena. Tomo por dividendo el número decimal, por ser de la especie que busco en el cociente, í por divisor, el otro; 1 para abreviar la division, viendo que el divisor 1000, tieue tres ceros, debo correr la coma decimal tres lugares hácia la izquierda del $\boldsymbol{\text { nog }}$mero decimal 703,5 , i no teniendo este mas de do cifras, snplo á su izquierda un 0 para poder ejecutar la operacion, í otro ademas para indicar que el cociente no contiene enteros; resultando asi por cociente la fraceion 0,0753 de peso, que valuada, equivale á 1 medio í 1 octavo de real, apróximadamente, cuyo resultado es el importe de la docena.

EJEMPLO N.o 85. Se sabe que 4 obroros han hecho 20 varas de obra, i se desea saber cuántas varas haran 9 obreros en el mism. tiempo. Las cantidades principales de esta cuestion, son 4 i 9 obreros, por ser de una misma especie; i la relativa conocida es, 20 varas, por ser de especie diferente. Esta regla de tres es directa, porque la razon de los obreros í la de las varas son de menor desigualdad (228), pues es claro que con mayor número de obreros se buscan mas varas; í asi planteo la proporcion, poniendo en la primera razon las cantidades principales, de menos á mas, en seguida la relativa conocida, por antecedente de la segunda razon, if la x, en lugar de la incognita ó cuarto término, como sigue:

$$
4 \mathrm{ob}: 9 \text { ob }:: 20 \mathrm{vr}: x \mathrm{vr}=43 \mathrm{vr} .
$$

Luego resuelvo la proporcion multiplicando entre sí los medios 20 i 9 , í dividiendo el producto 180 , por el estremo conocido $4(\mathrm{H})$; obteniendo asi por cociente ó cuarto término 45 varas, que son las que haran los 9 obreros (I).
(H) Esta operacion se indicará en los demas ejemplos poniendo á continuacion de la x, los térmnos medios que se han de multiplicar, sobre una raya horizontal; í el estremo conocido, debajo de ella.
(1) Téngase presente que la prueba de esta operacion consiste, en averiguar si el producto de los eairemos es igual al de los medios (235). En la proporaion anterior se tiene $45 \times 4=180$, i $20 \times 9=180$; luege

OTRO. 18 obreras han hecho una cierIn obra en 24 dias, $\{$ se quiere snher cuíntos dias seran menester para qu 8 obreros hagan la *nisma obra. Las cantidades principales de esta evestion, sen 18 i 8 obreros, i la relativa conocida es, 24 dias. Esla regla de tres es inversa, porqgee la razoz de los obrerns es de mayor designaidad, f la de los dias, de menor desigualdad (229), pues con menos nhreros se buscan mas dias; i para plantear la proporcion, en razon directa. pongo en la primera razon las cantidades principales, de menos á mas, como se ve:

$$
8 \text { ob }: 18 \text { ob }: 24 \mathrm{ds}: \infty \mathrm{d} c=\frac{27 \times 18}{8}=54 \mathrm{ds} .
$$

Resuelta la proporcion, obtengo por cuarto térmiao 3 亿 dias; que son loz que se necesitan para Gie los 8 obreros hagan la obra propuesta. EJEMPLO N.o 86. Se ha observado que 8 hombres, en 10 dins, trabrjando 6 horas por dia, kan segado 50 fanegas de trigo; i se quiere saber qué namero de fanegas segarán 4 hombres, en $!2$ dias, trabajando 9 horas por dia. Para resolver esta regla de tres compuesta la reducire á la simple del modo signiente: la primera cantidad principal de dicha cuestion es, 8 humbres, 1 las circunstancias que le corresponden, son 10 dias í 6 horas, cuyas cantiỏades muttiplicadas entre sí dan el producto δ término equivalente 480 hom-
met propercion entre sus términos. Adviértese admas, ques, cuando owrran quebradns comunes of denominados eo los cálculos de la regla de tres í en las demas roglas de esta segunda parts, es preferible trasformar aguellos qub batos in decimales, obserrando para ello las reglas dadas (195, 197; 201; 202 i 203), se an sea In fraccion, para reducir dichos cálculos al sencillo sistem? de los enteres. con las modificaciones quese han espl cado al tratur de tas operacione- de sumar, restar, ote., decimales, que deben tenerse rresentes.

- 195-

bres; la segunda cantidad principa, es, 4 honsbres, ílas circuastancias que le corresponden son, 12 dias i 9 horas, cuyas cantidades multiphicadas entre sí, dan el producto ó término equivalente 432 hombres; de manera que, с $\boldsymbol{4}$ la relativa $\mathbf{c o -}$ nucida 50 fanegas, queda reducida dicha regla á esta de tres si uple: Si 480 hombres han segado 50 áanegas de trigo ¿cuánlas segarán 432 hombres? I. viendo que con menos hombres se buscan menos fonegas, planteo la proporcion poniendo en la primera razon las cantidades principales 480 i 432 , de mas á menos, comu se ve:

$$
480 \mathrm{hb}: 432 \mathrm{hb}:: 50 \mathrm{fn}: x \mathrm{fn}=\frac{432 \times 50}{480}=43 \mathrm{fn}
$$

Resuelta la proporcion, se tiene por cuarto término 45 fanegas; que son las que segarán los a hombres de la cuestion propuesta.

EJEMPLO N. ${ }^{\circ}$ 87. He tomado prestado el capital 873° pesos por un mes, con el 1 por ciento de interes mensual, í quiero saber a cuánto ascienden los intereses que deho pager. Esta euestion se reduce á esta regla de tres simple: Si el capital 100 pesos produce 1 peso de iuteres ¿cuánto producira el capital 870 pesas? 1, viendo que con major capital se buscan mas intereses, planteo la proporcion poniendo las cantidades principales 100 í 8%, de menos á mas como sigue:

$$
100 \mathrm{cp}: 875 \mathrm{cp}:: 1 \mathrm{in}: x \mathrm{in}=\frac{87 \mathrm{x} \times 1}{100}=8,75 \mathrm{in} .
$$

Luego resuelvo la proporcion maltiplicando 875 por 1 , I de la derecha del producto 8%, separe con la coma dos cifras para decimales, to que equivale á dividirlo por el estremo 100, í obtengo por cociente 6 cuarto término el número mixto decímal 8 pesos í 70 centísimas de un peso, 6
reales, valuada esta fraccion (201); que son los intereses que debo pagar por el capital propuesto. EJEMPLO N. ${ }^{\circ} 88$. Se quiere saber qué ganancia producirá el capital 650 pesos, en 4 meses i 12 dias, al interes del 1 i $1 / 2$ pesos por 100 al mes, ósea del 1,0 pesos, trasformando el quebrado en decimales [196], Estacuestion se reduce á esta regla de tres compuesta: si el capial 100 pesos, en 30 dias (que componen el mes comercial), produce 1,5 pesos de interes icuánto producirá el capital 630 pesos, en 132 dias (que componen los meses í los dias indicados)? Para resolver dicha regla, la reducire á la de tres simple del modo siguiente: multiplicando la primera cantidad principal 100 pesos, por se circunstancia 30 dias, resulta el producto ó término equivalente 3000 pesos; 1 multiplicando la segunda principal 630 pesos, por su crrcunstancia 132 dias, se tiene el prodacto 6 término equivalente 83800 pesos; de manera que, con la relativa conosida 1,3 pesos de interes, queda reducida la cuestion á esta regla de tres simple: Si el cagital 3000 pesos produce 1,5 pesos de interes ¿cuánto produirá el capital 85800 pesos? I, viendo que, con mayor capital se buscan mas intereses, planteo la proporcion pouiendo las cantidades prineipales 3000 i 80000 , de menos á mas, como se ve:

$$
3000 \mathrm{cp}: 803800 \mathrm{cp}:: 1,5 \mathrm{in}: x \text { in }=\frac{85800 \times 1,5}{3000}=42,9 \mathrm{in} .
$$

Luego resuelvo la proporcion multiplicando 83800 por 1,5, I de la derecha del producto 1287000, separo con la coma una cifra para decimales, por otra que tiene el multiplicador 1,5 , i resulta por verdadero producto $1: 8700,0$ enteros cuyo número dividido por el estremo 3000 (abreyiaudo la operacion), obteago por cociente ó cuars
to término 42 pesos 1 el residuo $27!30$, que, trasformado en fraccion decimal (214), se tienen 9 décimas de un peso, que pongo á la derecha de los enteros despues de la coma; cuyo resultado manifiesta los intereses que producen los 650 pesos de la cuestion propuesta. Valuada la fraccion 9 décimas (201), equivale á 7 í 2 octavos reales, apróximadamente.

OTRO. Di prestado el capital 525 pesos al interes del 6 por 100 anual; se me ha devuelto al aǹo, 2 meses i 20 dias, í quiero saber á cuánto ascienden los intereses que debo cobrar por dicho fiempo. Esta cuestion da tamhien orijen á una regla de tres compuesta; pero la resolveré sin poner proporcion como se ha dicho en el número 254. Al efecto, multiplicando primero el capital 525 pesos, por 440 dias (que componen el tiempo indicado], tengo el producto 231000 , que, multiplicado por $6, q u e$ es el interes estipulado, se tiene 1386000 , cuyo producto dividido por el divisor indicado 36000 , da al cociente el número mixto 38 pesos i $18 / 36$ de un peso (abreviada la operacion), 64 reales, valuado el quebrado (204); que son los intereses que debo cobrar por el capital propuesto.

EJEMPLO N.0 89. He tomado prestade el capital 400 pesos, por tres asos, al interes del 9 por ciento anual, capitalizando cada año los intereses, $\{$ deseo saber á cuánto ascieude el capital primitivo aumentado de los intereses compuestos por dicho tiempo. Para resolver esta euestion observaré el método indicado en el námero 252 ; í á fin de obtener de una vez, en eada aǹo, el capital aumentado de los intereses que busco, lo multiplicaré por el que sirve de base, que es 100 , aumentado del 9 por cientestipulado, es decir, por 109, como sigue:

- 128-

Pd. $436,00 \mathrm{ps}$. Pd. 473,24 ps. Pd. $518,0116 \mathrm{ps}$. Luege mu'típlico e capital 400 pesos, por 10?, Ide la derecha del prodacto 43600 , separo con ba coma dos cifras para decimales, lo que equivale á dividirlo por 100 , 1 obtengo por cocient 436 enteros ó pesos cabales, que es el nuevo capital al fin del primer aino $\delta^{\text {áa }}$ pritucipios del segurdo. Ejecutaudo con dicho capital la misma -peracion, resalta por cociente el número decimal 473,24 pesos, que es el nuevo capital al fin del segundo ano 6 á principios del tercero: lo multiplico por el mismo 109 , ide la derecha det producto 5180116 , separo dos cifras para decimales, por otras tantas que tiene el multiplicando, I resula por verdadere prodacto 51801,$16 ;$ forriendo la cema decmal dos lugares hacia la izquierda, lo que equivale á dividirlo por 100 [217], - btengo por vociente el nómero mixto decimal $\$ 18$ pesos í la fracción despreciabie 116 diezmi. lésimas de un peso; cayo último resultado manifiesta el capital primitivo aumentado de tos intereses compuestos que busco.

EJEMPLO N.o 90. He comprado á crédito un surtido de mercaderias valor de 2400 pesus í firmado un pagaré á 5 meses plazo, estipulando el interes del 1 por ciento mensual en caso de demora; i quiero descoutar dicho pagaré satisfaciendo su importe 3 meses $\mathbf{f} 20$ dias autes del cumplimiento del plazo, í saber cuánto debe descontarse de su valur por los intereses
eerrespondientes al tiempo anticipado, cuál la catutidad liquida que deba entregar. Esta cuestion se reduce a esta regla de tres compuesta, reduciendo los tiempos á dias: Si por el capital 100 pesos, en 30 dias, se descuenta 1 peso de interes, por el capital 2400 pesos, en 110 dias; zeténto se descontará? Para resolver dicha regla la reduciré á la de tres simple del modo siguiente: multiplicando cada cantidad principal por su cirennstancia, es decir, $100 \$ 30$ 亿 2400 110, tengo los productosótérminos equivalentes 3000 í 264000 , feen Ja relativa conocida, 1 peso de interes, queda reducida la cnestion á la siguiente regla de tres simple: Si por el capital 3000 pesos se descuenta 1 peso de interes, por el capital 264000 pesox icuánto se descontará? 1 , viendo que por un capital mayor debe descontarse mayor cantidad de intereses. planteo la proporcion poniendo las cantt̂lades principales 3000 \& 264000 , de menos á mas, como sigue:
$3000 \mathrm{cp}: 264000 \mathrm{cp}: 1 \mathrm{I}: \mathrm{m}: x$ in $=\frac{263000 \times 1}{3000}=88 \mathrm{in}$.
Resuelta la proporcion, obtengo por cuarto términio 88 pesos, cuya cantidad expresà el descuento que busco: rebajada esta de la propuesta 2400 pesos, tengo la resta 2312 pesos, que es la cantidad liquida que debo entregar.

Cuando un tenedor de pagarés, de plazi, no cumplido, necesita dinero 1 quiere venderlos con el descuento de un tanfo por ciento mensual, se resuelve la cuestion como en ef caso anterior.

$$
\text { EJEMPLO N.n } 91 \text {. Trato de vender un }
$$ surtido de mercaderias que tiene de costo 2500 pesos, con la rebaja de tull 13 por cieuto, i quiero

saher á cuánto asciende el descrento í cuál la cantidad díquila que deba recibir. Para resolver esta cuestion, multiplico la cantidad propuesta 2300 , por 15. I divido el producto 37500 , por 100 ; resultando asi por cociente 370 pesos, cuya cantidad expresa el descuento: rebajada esta de la prophesta 20000 , tengo la resta 2120 pesos, que es la cantidad líquida que debo recibir.

Caando ocurra el tener gue comprar 6 venider alguna cantidad de cosas con el aumento de un tanto por ciento, se resuelve tambien la cuestion como en el caso anterior, f el resultado se agrega á la cantidad propuesta.

OTBO. Hallándose por ahora el valor real de los vales del crédito público á razon de un 12 por ciento, ó lo yue es lo mismo, sujetos al descuento de un 88 por ciento, se quiere vender i reducir á moneda corriente un vale ó documento cujo valor nominal eś de 812 pesos. Para resolver esta cuestion, en vez de multiplicar el valor del documeuto por el tanto por cíento del descuento, segun la regla, to haré por el que expresa el valor real, por ser inferior á aquel, como se acostumbra en tales casos, I á lin de obtener de una vez el valor líquido del documento: al efecto, multiplicando los 812 por 12 I dividiendo el prodacto 9744 , por 100 , resulta al cociente el número mixto decimal 97 pesos í41 céutimos de un peso, ó 3 11 medio reales, valuada la fraccion, que es to que valdrá dicho documento reducido á moneda corriente.

EJEMPLO N: 0 92. Quiero saber cuánto

 debo pagar á un sujeto que le comisioné la venta de una partida de cacao, valor de 2325 pesos, habiéndole ofrecido un 3 i $1 / 4$ pesos por ciento ${ }^{\text {I }}$ de comision, 6 sea un 3,25 pesos, trasforman-do el quebrado en decimales (196). Para resolver esta cuestion, multiplico la cantidad propuesta 2323 , por 3,25 , 1 de la dereeha del producto 735625 , separo dos cifras para decimales, por otras tantas que tiene el multiplicador, 1 resulta por verdadero producto 7556,$25 ; 1$ corriendo la coma decimal dos lugares hácia la izquierda, lo que equivale á dividirlo por 100 (217), obtengo por cociente el número mixto decimal 75 pesos i 5620 diezmilésimas de un peso, 64 il medio reales, valuada la fraccion, cuyo resultato expresa la cantidad que debo pagar de colmision.

EJEMPLO N.o 93. Con el capital de 7000 pesos, que he invertido en un negocio, he gat nado 560 pesos, 1 quiero saber cuánto por ciento ha producido dicho capital. Para resolver esta cuestion, maltiplico la ganancia 560 pesos, por 100, Í dividiendo el producto 56000 , por el capital 7000, resulta al cociente 8 pesos, que es el tanto por ciento que busco.

EJEMPLO N. ${ }^{\circ} 94$. Quiero reducir 73 me tros de paño, á varas. Esta cuestion se reduce á esta regla de tres simple: $S i 100$ metros equivalen á 118 varas eá cuántas equivaldran 75 metros? I, viendo que con menos metros se buscan menos varas, planteo la proporeion poniendo las cantidades principales, 100 i 75 metros, de mas á menos, como se ve:
$100 \mathrm{mt}: 75 \mathrm{mt}: 118 \mathrm{vr}: x \mathrm{vr}=\frac{118 \times 75}{100}=88,50 \mathrm{vr}$.
Resuelta la proporcion, obtengo por cuarto término el número mixto decimal 88 varas 150 centésimas de otra, 6 media vara, cuyo resultado equivale á los 75 metros de la cuestion propuesta.

OTRO. Quiero reducir $357 \quad 3 / 4$ va-
ras de focnyo á yardas, 6 sea $3 \ddot{3} 7,75$ varas, trasformando el quebrado en decimales 196) Para resolyer esta cuestion, observaré el método indicado en el número 266 . Al efecto, corriendo la coma dos lugares haeia la derecha del número decimal $35 \overline{2}, 10$ varas, lo que equìale á multiplicarlo por 100 (212. tenge per producto el entero 30377 , que dividido por 108 varas que corresponden á 100 yardas resultau al cnciente 331 yardas 1 el residuo 27/408 e g!e, trasformado en fraccionndeemal (214), se tienen 2ä centtésimas de una yardas cnyo resultadu equivale á las 357 i $3_{\text {/ }}$ varas de la cuestion propuesta.as ESEAPLO N. 93 . Defo en Valparaiso la cantidad de 8300 pesos. i, temiendo que pagarlos en pesos bolivianos del 59, en eircunstaneias que estos se cambiain alli por 82 centavos "de fa moneda chrlena, es decir, que por cada 000 pesos ehilentos se dan 122 pesos bolivianos. ¿quiero satien qué cantidad defo remitir en pago de dicha deuda. Esta cuéstion se reduce á estamregla de tres simple Si 100 pesos chitenos equiSvaten á 122 press bolivinoms, ia cuántos pesos bo--hivander equibatirán 8500 pesos chilenos? 1, viell-- Wo qué con mas pesos chileums se buscan mas pesos bohivianos, planteo la proporcion puniendo las cantiđades principales, 100 i 8000 , de menos 8 mas comd sigue:
$100 \mathrm{ch}: 8000 \mathrm{ch}:: 122 \mathrm{~b}: x: \mathrm{b}={ }^{8: 00 \times 122}=10370 \mathrm{~b}$.
Resuelta la proporcion, obtengo por cuarto términu $103: 0$ pesos bolivianos, que son los que debo remitir en pago de la cantidad propuesta.
-क्र 2t\& EJEMPLO N. ${ }^{\circ}$ 96. Quiero reducir 250

- $193=$

anas ide Brabaulte á yardas. No conciendose la relacion direnta que tiene la ana de Brabante f la yarda, sino por medio de la vara, resolveré la curstion por medio de esfa regla conjunta: Se sabe que 100 anas de Brabante equiraten a 81 varas; que 108 varas equivalen á 100 yardax; quiero saber cuántas yarda's equitaiten 250 анаs: AD efecto, escribu winas debăjo ${ }^{19}$ de ritras, segun la regla, las razones que propohe la cuestion en of mismó orden con que se 'las Tha eliunciado, me-4
 ceilente 250 anas, 400 a 100 y , $: 250$ a; x yol relativo a la especie que busco. que pongo á la derecha de las dis razotes, porgue debe excephtarse de la multiplicacion, como se we ell el márjen. Luego, mulliplicando sentre si tos antecedentes I consectuentes she dichas arazones, fenger tio prodnetos 10800) 88100 , the quetumandolos por cantidatt des principales, ípor relatava eonocida el últimoantecedente 2.50 , plateo To proporion como sigue:
 $110800-8100: 230: x \cdot y \mathrm{yr}=\frac{8100 \times 250}{10800}=187,5 \mathrm{yr}$. 10806 Inum 002 ㄷos

Resuelta la proporcion, ohtengo pior cuarto termino el número mixto decimal, $\{87,5$ vardas, ciryo. resultado equivale á las 230 anas de Brabante de la caiestion propuesta.

ОТИO: En comerciante de "Sucre debe en Francia 20 \% 30 francos, witor de una factura que ha recibido, i quiere saiber qué cantidad deple be remitir en pesos bolivianes del 59 en pago de didicha denda. No connecientose tampoce en esta cuestion ta relacion divecta gue tienen el feanco el peso del 59, sino per medio del peso
chileno, resolveré la cuestion por medio de la siguiente regla conjunta. Se sabe que 3 francos equivalen á 1 peso chileno; que 100 pesos chile nos equivalen á 122 pesos bolivianos del 39 ; 6 se quiere saber á cuántos de estos equicalen 230750 francos. Al efecto, escribo al márjen las razones que propone la cuestion, como en el ejemplo anterior, í formo la proporcion del producto de los anteceden-
 mo anteceden-
te 25750 francos referente á la especie que se busca, como se ve:

$$
500: 122:: 257700: x b=\frac{25750 \times 122}{300}=6283 \mathrm{~b}:
$$

de la cual resulta que el comerciante tendrá que mandar á Francia 6283 pesos bolivianos en pa-t go de los 25750 francos. EJEMPLO N. ${ }^{\circ}$ YT. Tres negociantes se han asociado para una especulacion de vinos, i para ella ha contribuido el primero con el capital de 270 pesos; el segundo, con 4700 ; f el tercero, con 500: realizada la venta, resulta que la ganancia total ó comun es de 130 pesos, i se desea saber la parte que de ella corresponde á cada socio en proporcion al capital que puso. Para resolver esta euestion, sumo primero los capitales con que los socios han contribuido, is resulta el fondo á la suma 1250 pesos; í para eqcontrar la ganancia parcial que corresponde ás aquellos, planteo una proporcion para cada ane, tomando por cantidades principales el fondo $\mathbf{1 2 5 0}$, i la ganancia 130 pesos; for relativa conocida, el. capital que puso cada socio, como sigue:

Para el $10^{\circ}-1250: 150:: 275: x=\frac{275 \times 150}{1200}-33$

$$
\begin{aligned}
& \text { Para el } 2.0-1230: 150:: 175: x=\frac{475 \times 150}{1250}=57 \\
& \text { Para ef } 3.0-1230: 150:: 300: x=\frac{130 \times 00^{x}}{1250}=60
\end{aligned}
$$

Suma de ganancias parciales igual á ta totah 1000
Resuelta la proporcion para cada socio, se tienen 33 pesos de ganancia para el primero; 57 , para el segundo; 160 , para el tercero: sumando estas ganancias parciales, resultan 130 pesos, cantidad igual á la total propuesta en la cuestion.

En el lenguaje del comercio, se llama dicidendo la ganancia ó perdida total que se ha he repartir entre los socios 6 accionistas que han contribuido á formar todo el fondo ó capital de la compania.

OTLRO. A veces se le da accion, en lás utilidades de un negacia, a algan individun gine no ha puesto capital, pero que ausilia, con sas conncimientas ó con su trabajo personal, a hacer productivo el de los demas. Ejemplo:

Tres individuos han hecho una compania para cierta especulacion, poniento ef primero el capital de 2000 pesos; ef segilado, 1500; el tercero no pone capital; mas, por hallarse encargado del manejo ídireccion de la empresa, se le concede la mitad de las utilidades, es decir, que es solo representa tanto capital como los otros dos, á saber 3300 pesus. Han ganado 2800 pesos, í se desea saber cuánto corresponde a cada uñe. Para resolver la cuestion, sumo primero los tres capitales, i tengo el fondo 7000 pesos; Juego, planteo una proporcion para cada socio, tomando

$$
-136
$$

por eantidades principales dicho fondo it la ganameja total; if por relativa conocida, el capital que representa cada une, como se ve:
Para el 1. ${ }^{\circ}-7000: 2800:: 2000: x=\frac{2800 \times 2000}{7000}=800$
Parael 2. ${ }^{\circ}-7000: 2800: 4500: x=\frac{2800}{7000} 1500=600$
Parael $3 .^{\circ}-7000: 2800: 3000: x=\frac{2800 \leq 3500}{7000}=1400$
Suma de ganancias parciales igual á la total. 2800
Kesuelta la proporcion para cada socio, resulta corresponder al primern 800 pesos; al segundo, 600; í al tercero, 1400. EJEMPLO N. 98. EL 1° de Agosto pasado, se asociaron tres sijetus para una especulacion comercial, i desde laego puso el primero 1200 pesos; pasados seis mesps, puso el segundo 1600; í á los tres meses despues de este, puso el tercero 2000. Al año que se estableció la sociedad se realizó la empresa, 1 resuitó de pérdida comun 600 pesus, i se desea saber cuánto corresponde de ella á cada socio, en proporcion a su capital i al tiempo que permaneció ell el fondo. Examinada la ruestion, se ve que el capital del primer socio permaneció 12 meses; el del seguado. 6 meses; i el del tercere, solo 3 meses. Para resolver esta regla de compania compuesta, la reduciré á la simple del modo siguiente: multiplicando el capital de cada socio por el tiempo que permaneció en el fondo, tengo el producto ó capital aparente, para el primero, 14400 ; para el segundo, 9600 ; i para el terrero, 6000 ; cuyos capitales considero puestus en el fondo por un mismo tiempo: sumandolos, resulta el fondo 30000 pesos: luego, planteo una proposcion para
*ada sonin, tomando por cantidades principales dicho fondo 1 la pérdida total; ipor refativa corugcida, el capital aparente que resplta para cada uns, cotng signe:
Para el $1 \%-30000: 600:: 14400: x=\frac{14 / 00 \times 600}{3}=288$
Para el 2.0-30000:600:: 9600:x=$\frac{9600 \times 600}{30000}=192$
Para el $3 .{ }^{\circ}-30000: 600:: 6000: x+\frac{6000 \times 600}{30000}=120$

Suma ide pérdidas parciales igual á la total. 600
Resuelta la proporcion para cada socion se tier nen 288 pesos de púrdida para el primero; 192, para el seguado; f 120, para el texyero. ESEMP1O N. 99. Uu licorista fa comprade tres partidas de aguardiente de distiutos grados; á saher: 2 quiutalén de 18 grados; 3 , de 21 ; i 4, de 36: ha mezclade foite el aguard dieute i desea sabur de qué gradon resultar fa mezcla, para venderlo à ua sole precie. Para resolver esta curstion, esprilio las partidas unas detaje de etras, cons sigue;

Quintales. Grados. Productos.

Suma. $9 \quad$ Suma. $252: 9 \mathrm{qu}=28 \mathrm{gr}$.
Luega multiplico, segan la regla, cada partida de aguardiente por su respectivo grado, f la suma 252 de estos productos, la divido por da sama 9 de los quintales, resultando asi por con ciente 28, que es el grado ó término medio de la mezcla que se husca.

$-138-$

OTRO. Tengo un surtido de libros qưe he comprado á diferentes precios, á saber: 330 , a 3 reales; 420 , á 4 reales; 1230 , á 6 reales; 1 quiero saber á cómo me sale uno con otro, 6 cual es el precio médio. Esta cuestion se resuelve tambien como en el ejemplo anterior, segari se ye:

> Libros. Precios. Productos. $350 \times 3 \mathrm{rs}=1050 \mathrm{rs}$ $420 \times 4 \mathrm{q}=1680 \mathrm{k}$ $230 \times 6 \mathrm{k}=1380 \mathrm{q}$

Suma. 1000. Suma. $4110 \mathrm{rs}: 1000 \mathrm{lb}=4,11 \mathrm{rs}$.
Luego, multiplico cada partida de libros por su respectivo precio, i la suma 4110 de estos productos, la divido por la suma 1000 de los libros, resultando asi por cociente el número mixto decimal 4 reales 111 centésimas de un real, que es el precio médio de cada volumen, que busco.

EJEMPLO N. ${ }^{0}$ 100. Un platero tiene oro de 23 fde 20 quilates: quiere componer una aleacion ó mezcla metáliea de 21 quilates de lei, i desea saber en qué proporcion debera tomar aquellós. Para resolver la cuestion, anoto fuera de una llave, como se ve al márjen, $21\left\{\begin{array}{l}23 \ldots 1 \\ 20 \ldots 2\end{array}\right.$ lates: dentro de ella í hácia arriba de este número, escribo el 23 , Suma..... 3 por ser mayor que 21; 1 hácia abajo, el 20, por ser menor que dicho 21: en Seguida, resto 21 de 23 , f escribo la diferencia 2 en frente det menor 20: luègó resto éste nứmerơ de 21 , ila diferenciä 1 la apunto en fren: te del mayor $23 . A$ Ais, tengo que, para compo ${ }^{2}$ fer la mezeld dé 24 quilates de leif, pedida en la cuestion, se deben tomar granos, adarmes,
*nzas, ó to que se quiera, en las siguiestes proporciones: 1, del oro de 23 quilates; if 2, del de 20; cuyas razones dan sla suma 3 , que es la cantidad de mezcla correspendierte á dicka lei. OTRO. Un sujeto quiere obtener oro de 19 quilates, mezclande para el efecte oro de 24 suilates f cobre, il desea saber cuántas onzas mezelará de cada especie. Como el cobre no tiene tei de quilates, se pendra cero en su dugar. Para resolver la cuestion, planteo í ejecuto la operaciorr, como
 ela pedida, se deben to- Suna.... 24 on. mar 19 enzas del ore de 24 quilates $i \ddot{\partial}$ de cobre, que sumadas, dan 24 orzas de mezcla de 19 quifates.

OTRO. Un comerciante tiene anil de 24, de 20 i de 14 reales da libsa, i quiere saher ell qqué proporcion to mezclará para venderlo por partidas al precio médio de 18 reales da libra, sin perder ui ganar.
Lara regolver esta enest tion, anoto al márien, fuera de una llave, el precio médio dato, que es 18 ; dentre de ella í hácia arriba del 18, apunto los pre-

Suma 16 lb. cios 24 if 20 , que son mayores que él: háeia abajo escribo el precio me-s Hor 14; f, como tos precios superiores ab precios nédio son dos, mientras es uno solo el inferior, Io eseribo segunda nez, para obtener asi tantosr hácia arribaicomóo hácia cabajo del iprecio médio.. En seguida, resto el precio médio 18, de 24, que es uno de les mayores; I la diferencia 6, la escribo á ía derecha del cualquiera de los meeo
nores, per ejemplo, del primer 14: luego, resto 18 de 20, f la diferencia 2 fa anotóo en frente del otro menor despues, resto el un 14 de 18, I la diferencia a la eseribo á ta derecha de cualquiera de los mayores, por ejemple, de! 24; finalmente, resto el otro in de 18 , i la diferencia 4 la apunto en frente del 20 . 4 Asi, tengo que, para formar una mezcla de anill que se preda vender al precio médio de 18 reales libra, se deben tomar 4 fibras del de á 24 reales; otras 4, del de á $20 ; \quad$; $6+2=8$ tibras, del (dee á 1 14 reales \ddagger cuyas razones dan la suma 16 -libràs de mezcla.

EJEMPLO N.o 101. Un platero tiene plata de 12 . íde 9 dineros de lei; i, queriendo componer 6 marcos de aleacion de 10 dineros de tei, desea saber qué cantidad debera tumar de cada: calidad. Para resulver esta chestion, busco prie meramenter fa razow en que deben mezclarse, observando para elto la misma loperạcion que ete. los ejemplos anteriores, como se ve ell A.
B.

$$
3: 6:: 1: x=\frac{6 \times 1}{3}=2 \mathrm{mr}
$$

$$
3: 6:: 2: x=\frac{6 \times 2}{3}=4 \quad a_{1}, 1
$$

10
$\{12 \mathrm{dn} .1$ mir. $\{$

Suma. $\quad 3 \mathrm{mr}$. Sm . de la nueva mezcla. 6 mr .
enyo resultado indica que, para componer dicha aleacionionse debe tomar marco de ta plata de 12 dineros; í 2 , de la de 9 ; cuyas razones dan la suma 3 marcos; pero, como la incantidad de mezcla que pide da cuestion, es /de 6 marcos, para encontrarla, planteo á la derecha de dicha operacion una regla de itres para cada calidad, tomando por cantidades principates la suma 3 mar--as de lá razonedy if el número 6 que expresa

- 141 -

dos marcos que se piden; i por relativa conocida, la razon que ha resultado para cada calidad, cetho se, ve en B. Resuelta cada proporcion, tentgo que, para obtener la nueva mezela de 6 marcos de aleacion de diez dineros de lei, pedidos, deben tomarse 2 marcos ide la plata de 12 di neros fa de la de 9 , que, sumados, dan la canttidad de marcos expresados.

$$
\text { EJEMPLO N. } 10 \% \text { Tengo aguardiente }
$$ de 23, de $2 \boldsymbol{2}$ i de 19 grados, G , tratando de componer una mezzla de eillos que resutte de 20 grados f de manera gne entren, 10 arrobas del de á 23 , quiero ayeriguar en qué razon se han de mezclar. Aqui bai dos calidades superiores á la media 20 ; it una inferior, que escribire segunda yez, para igualar á las superiores; 1 , para resolver la cuestion, busco primero la razonlen que se han de mezclar para obtener la mezcla de 20 grados, como en los ejemplos anteriores, segun se ve en C :

Suma. 7 ar. Sm. dela nueva mezcla 70 ar.
cuyo resultado manifiesta que, para componer dicha mezcla, se debe tomar 1 arroba del de á 23 ; otra, del de á $22 ;$ í $3+2=5$, del de á 19; pero, er mo en da mezila que busco, deben entrar 10 arrobas del de á 23 , las escribo en frente de la razon de dicho 23 , sí para hallar las gue debo tomar de las demas calidades, planteo una proporcion para cada una, tomando por cantidades principales la razon 1 arruba correspondien-
te á là prim̀nera calidad, fol númern $\mathbf{t 0}$ que expresa las arrobas pedidas; 1 por relativa conocida, las demas razones sucesivamente, como se ve en D. Resuetta cada proporcion, tengo que, para obtener la nueva mezcla, se deben tomar 10 arrobas del aguardiente de 23 grados; otras 10 , det de á 22 ; 130 , del de á 19 , gue sumadas, componen 70 arrobas de mezela de á 20 grados.

EJEMPLO N.e 103. He firmado tres pagares, por efectos que he comprado en distintas fechas plazes, que á continuacion se expresan: 1, deseando verificar et page de ellos en un mismo plazo de manera que ainguna de las partes sufra pérelida, quiero averiguar en qué fecha se vencerá el plazo médio. Para resolver la cuestion, planteo la operacion como sigue:

> Fechas. Valores. Meses. Dias. Productos. Julio $1 .^{\circ}-\mathrm{ps} .100$ á $2 \times 60=6000$ números.
> " $5-\mathrm{ps} .200$ á $4 \times 120=24000$ números.
> " $10-\mathrm{psv} 900$ á ${ }^{2} \times 150=75000$ númeres.

IT Suma... 800.
Somar... $105030: 800=131$
Luego, multiplico el valor de cada pagaré por sw respectivo plazo reducido á dias, f divide la suma 103000 de los productos, por la suma 800 de los valores, obteniende asi por cociente 134 dias (despreciando el quebrado), que es el plazo médio que basco, temando por época el $1 .^{\circ}$ de Julio; de donde se deduce que debo verificar et pago el 11 de Noviembre.

EJEMPLO N. ${ }^{\circ}$ 104. Se pilie vn número cuya mitad, terera 1 euarta partes, juntas, compongen 182. Para averiguarle, busco un número cualquiera que tenga $1 / 2,1 / 3$ i $1 / 4$ partes en enteros; f, para encontrarlo con prontitad, multipliço entre si tos denominađores de estos quebra-

-143 -

dos, cuyo producto, 24 , será el námero supues, to; pero, como la mitad, tercera í cuarta partes de este número, es decir: $12+8+6$, suman 26 , f no 182 como se pide, para conseguirlo, formaré una regla de tres, tomando por cantidades principales la suma 26 I el número 182 indicado en la cuestion; ípor relativa conocida, el número supuesto 24 , como sigue:

$$
26: 182:: 2: 4 x=\frac{182 \times 24}{26}=168 .
$$

Resuelta la proporcion, hallo por cuarto término 168, que es el número verdadero, cuya mitad, tercera í cuarta partes, á saber: $84+36+42$, componen el número 182 pedido en la cuestion.

OTRO. Tres comerciantes pusieron en un fondo igual cantidad para cierta especulacion; pero, no teniendo todos la misma ciencia, convinieron en repartir la ganancia de modo que el segundo tuviese el duplo gue el primero; if el tercero, el triplo del segindo: ganaron 9000 pesos, í se desea saber cuánto toca á cada uno. Para resolver la cuestion, stipongamos que al primero le toca un número cualquiera, v. g. 12; asi, el segundo tendria el duplo, 24; f el tercero, el triplo, 72; cuyas partidas componen la suma 108; pero, como la cantidad divisible propuesta en la cuestion es de 9000 , i no de 108, para encontrarla, plantearé una regla de tres, tomando por cantidades principales la suma 108 í el nủmero 9000 indicado; í por relativa conocida, el número supuesto 12 , como se ve:

$$
108: 9000:: 12: x=\frac{9000 \times 12}{108}=1000
$$

Resuelta la proporcion, se tiene por cuarto término 1000 , que es el número verdadero correspondiente al primero; í asi, al segundo le tocaráa

- 114 -

el fuplo, 2000; i al te rcero, el triplo, 6000, qwe. componen la suma 9000 . proptesta en la cuestion. OTRO. Un labrador compró unas tierras, uria easa, un par de mulas f uf carro, ell 950 pesos: las mulas le costaron tres veces mas que el carro; la easa, dos veces mas que las mulas: \{las tierras, cuatro veces mas que la casa, 1100 pesos mas: se desea saber to que costó cada cosa. Para averiguarle, tomo por valor del earro un número enatquiera, v. gr. 30 ; f en este supuesto, las mulas valdran el triplo de 10 , es decir, 30; fa caisa. el doble de 30, esto es, 60; ; las tierras, el cuadruplo de 60, es decir, 210 . álos que se deben agregar 100 pesos mas. Sin contar aum con estos, la suma de los demas ntimeros es 340 , ell vez de $900-100$, es decir, 830: para toniseguir esta, formaré una regla đè tres, tomando por cantidades prícipales la suma 340 i el núthero buscado, 800; i por relativa eonocida, el supuesto $\mathbf{1 0}$, comio sigue:

- oigq ls $340,850: 10: x=\frac{800 \times 10}{340}=25$,

Resuelta la proporeion, hallo por cuarto término - 3 pesos, que es el verdadero valor del carro; if segun esto, las mulas valen $20 \times 3=73$ pepessis; la casa,, $73 \times 2=150$ pesos; i las tierras, $150 \times 4=600$ peses, à los que, à̀adidos $\operatorname{los} 100$, que no se halian incluide por no ser este múmero proporcional con tos demas, resultan 700 pesos, euyasz cantjdader componen tos 930 que pide la cuestion.

FIN DE LOS EJEMPLOS.

CATALOEO

de los opúsculos para la instruccion de los niños que se hallan de venta en la Capital Sucre, en la tienda del comerciante Santiago Vaca-Guzman, situada en la plaza mayor, á los últimos precios siguientes:

$$
\text { A saber. } \quad \text { P. R. }
$$

Aritmética Mercantil, para la Instrucion Primaria elemental \& superior, por VacaGuzman, á.

Exposicion de la Doctrina Cristiana, para la instruccion de las niñas de los Colejios de Educandas i de las familias, por id. " 4

Compendio de Ortografia de la Lengua Castellana, por id.

Método de lectura gradual, en diez cuadros, por id. 1 a

La Exposicion de dicho Método que contiene ademas las reglas para enseỳar á leer, por id.

Catecismo de la Doctrina Cristiana, por Ripalda, nueva edicion correjida í aumentada, por id.

Reglas de Urbanidad, nueva edicion correjida í aumentada, por id. . . . «1

Nueva Cartilla ó silabario completo, para aprender á leer con facilidad, por id. « 1 Colecciones de seis muestras de escritura inglesa con la correspondiente

Relijion demostrada al alcance de los niños, por Balmes.

[^0]: (D) Para acostumbrar á los nièos á escribir los números en el lugar que les corrisponde, segua lass reglas dadas, es mui útil rayar la pizarra 6 el papel en que hayan de practicar de esta maneragis? 1. advirtiéndoies, que en, la primera columna de la derecha se escriben las unidades absolutas; en la sezunda, las decenas; en la tercera, las centenas; en la cuarta, los millares; etc., se les ejercitatá mucho en escribir varias combinaciznes de cifros. ya de unidades solas, ya de decenas, ya de centenas, etc., i asi hasta uu-
 meros crecidos; ía leerlos al mismo tiempo, para que asi se familiaricen con el órden de las unidades í de los periodos, tanto procediendo de de-

[^1]: recha a izquierda, como al contrario; de manera que, en oyeudo erunciar cualquier número, distirgan al momento con cuantas cifras í cuales se le deba representar; que lugor corresponda à cada una de las significativas, i por último, que lugares deberan estar ocupados con ceros; i asi mismo en cualquier combinacion de cifras que esté escrita, nuedan prontamente determinar el orden de unidades que cav da una representa con solo ver el lugar que ocupa.

